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1 The Optimal Stopping Problem and the Reservation Offer

1.1 DISCRETE TIME

Consider a risk neutral unemployed worker who is searching for a job under the following circumstances. Time is
discrete. Each period the unemployed worker gets some income b > 0 and has a probability π < 1 of drawing an

offer from some distribution of offers. Let the distribution of offers be indicated with F (W̃ ) = prob
{
W < W̃

}
where

W is the lifetime utility associated with a job. Assume F (0) = 0 and F (W̃MAX) = 1, with W̃MAX < ∞. The
distribution of offer is stationary and time invariant. Each period, conditional on getting an offer, the worker has to
decide whether accepting or not the offer. Assume that if the worker accepts the offer, he never returns unemployed
(a job for life!). How should the worker decide?. Should he accept any job, or is there some intrinsic value of waiting
for another period? How can we determine this intrinsic value of waiting.

In formal terms, the worker has an option value at hand: he or she has option to reject the offer and continue to
search. What we have to determine is when is optimal to stop searching and accept an offer. Seen in this term, the
problem we want to solve is an optimal stopping time. We proceed very slowly, and we begin with the case in which
time is discrete and finite, and we then move to the infinite horizon case.

1.1.1 FINITE CASE

Assume the worker has a discount rate equal to β < 1 and that he leaves for T periods. Assume also that there is
no possibility of recall. Consider an unemployed worker at time t who has just received an offer which has values W.
The worker faces two choices: accept the offer W or continue to search and getting an offer next period. If the value
of continue to search at time t is Ut (note that Ut is to be determined!) the problem of the worker is simply solved
by

(Vt|W ) =

 Max[Ut,W ] t = 1, 2, 3...t− 1

W if t = T,
(1)

The maximization of the agent is whether to accept a W job or continuing to search. Clearly, the worker should
accept any job that pays at least Ut, so that it is optimal to stop searching if and only if W ≥ Ut, where Ut is the
reservation offer, or the value of the job at which the worker is indifferent between working or searching. We have
learnt two important insights. First, Ut can be interpreted as a value of a job that makes the worker indifferent
between working or continuing. This maximization problem is described in Figure 1. Given Ut, the value function
has a kinked exactly at Ut, which has indeed the interpretation of the reservation offer. Second, we understand that
when the time is finite the problem is likely to be solved easily, since we know that in the last period of the game
the worker will accept each and every job that has received. When time is over, the value of continue to search must
be zero.

The worker has the option to reject the offer and continue to search, in which he or she receives b next period in
unemployment compensation, and may get a new offer W̃ . Let Vt = W the worker’s lifetime utility when he has an
offer that has value W.

The problem is to find Ut. To find Ut let us imagine of considering a worker who has just rejected an offer and
is continuing to search. At this point, it should be clear that the value of rejecting the offer and continue to search
at time t is

Ut =

 β[b+ (1− π)Ut+1 + π
∫
max[W̃ , Ut+1]dF (W̃ )] t = 1, 2, 3...t− 1

0 if t = T,
(2)

If t = T the value of continuing is zero. If t < T than the expression above becomes a proper value function. The
right hand side is discounted at rate β < 1, since everything will happen next period. The next period income is
b. Further, a new offer may or may not arrive. The offer arrives at rate π. If the offer does not arrive the worker
will continue to search, and will get a value Ut+1. If an offer arrive how is the problem determined? It is described
by the expression in the integral. But that is simply the problem described by equation 1 above in expected term,
where we can get a value W̃ with probability dF (W̃ ). When will have W̃ on hand, we will do exactly what we did
with equation 1 and Figure 1. The problem is now clear, the worker should in general reject any offer that does not
pay at least Ut, which is indeed the value of the reservation offer.

Ut then solves the discrete time Bellman equation. In the finite case, one can solves for the sequence {U1, ...., UT }
by backward induction. By working backward, the problem is fully determined. This is very easy to do it in a
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computer. A technical note: for β < 1 the right hand side is a contraction mapping by the Blackwell Sufficient
conditions for a contraction (See Stokey Lucas).

1.1.2 INFINITE HORIZON WITH STATIONARY ENVIRONMENT

In the infinite horizon stationary case,
lim
t→∞

Ut = U

and the reservation value solves

U = β[b+ (1− π)U + π

∫
max[W̃ , U ]dF (W̃ )] (3)

The value function U can be further simplified by removing the max operator. This is a general property in
reservation rule maximization. By virtue of the reservation property the integral in the previous expression can be
written as ∫

max[W̃ , U ]dF (W̃ )] =

∫ U

0

UdF (W̃ ) +

∫ W̃Max

U

W̃dF (W̃ )

Further, since U can be written as U =
∫ U

0
UdF (W̃ )+

∫ W̃Max

U
UdF (W̃ ) the reservation rule of equation (3) becomes

U = βb+ βU − βπ

∫ U

0

UdF (W̃ )− βπ

∫ W̃Max

U

UdF (W̃ ) + βπ

∫ U

0

UdF (W̃ ) + βπ

∫ W̃Max

U

W̃dF (W̃ )

or

U =
β

1− β
[b+ π

∫ W̃Max

U

(W̃ − U)dF (W̃ )] (4)

which is an equation that implicitly defines U. Two comparative static follows.

Remark 1. An increase in unemployment compensation b increases the reservation offer, so that workers become
more choosy

To see this simply implicitly differentiate equation (4) with respect to b.

∂U

∂b
=

β

1− β
+

βπ

1− β
(U − U)− βπ

1− β

∂U

∂b

∫ W̃Max

U

dF (W̃ )

∂U

∂b
[1 +

βπ(1− F (U))

1− β
] =

β

1− β

∂U

∂b
=

β

1− β + πβ(1− F (U))
≥ 0

Remark 2. An increase in the arrival rate of offer π increase the reservation offer, so that workers become more
choosy

Differentiate with respect to π yields

∂U

∂π
[1 + βF (U)] =

∫ W̃Max

U

(W̃ − U)dF (W̃ )

1.1.3 CONTINUOUS TIME

POISSON PROCESSES A Stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents
the total number of “events” that have occurred up to time t.

A counting process is said to possess independent increments if the number of events which occur in disjoint time
intervals are independent (N(10) is independent of the event occurring between N(15) and N(10)

A counting process is said to possess stationary increments if the distribution of the number of events which
occur in any interval of time depends only on the length of the time interval

The counting process {N(t), t ≥ 0} is said to be a Poisson process having rate λ, λ > 0 if i) N(0) = 0; ii) The
process has stationary and independent increments; iii) P{N(h) = 1} = λh+ o(h); iv) P{N(h) = 2} = o(h).
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Further, the number of events in any interval of length t is Poisson distributed with mean λt. That is for all
s, t ≥ 0

P{N(t+ s)−N(s) = n} = e−λt (λt)
n

n!
n = 0, 1, ..

which implies that P{N(t) = 0} = e−λt (no events up to time t) has an exponential distribution with mean 1/λ.
Let us denote the time of the first event by T1. For n > 1, let Tn denote the elapsed time between the (n− 1)st

and nth event. The sequence {Tn,n = 1, 2, ...} is called the sequence of interarrival times Let’s study the distribution
of the Tn. Clearly, the event {T1 > t} takes place if and only if no events occur in the interval [0, t] and thus,

P{T1 > t} = P{N(t) = 0} = e−λt

Hence T1 has an exponential distribution with mean 1/λ. Now P{T2 > t} = E[P{T2 > t|T1}]. However

[P{T2 > t|T1 = s} = P{0 events in (s, s+ t)|T1 = s}
= P{0 events in (s, s+ t)}
= e−λt

where the last two equations followed from independent and stationary increments. This implies that T2 is also
exponential with mean 1/λ. Thus, Tn, n = 1, 2..... are independent identically distributed exponential random variables
having mean 1/λ. This implies that the assumption of stationary independent increments is equivalent to asserting
that, at any point in time, the process probabilistically restarts itself. In other words, the process has no memory.

THE ASSET VALUE FUNCTION Let’s assume that the interval between time t and time t+ 1 is of length
∆ and let assume that the arrival rate of job offer follows a Poisson process with arrival rate λ. Equation (1) can be
rewritten as

U(t) =
1

1 + r∆
[b∆+ (1− λ∆− o(∆))U(t+∆) + (λ∆+ o(∆))

∫
max[W̃ , U(t+∆)]dF (W̃ )] (5)

where β = 1
1+r∆ . Equation 5 can be written as

U(t)r∆− [U(t+∆)− U(t)] = b∆− (λ∆+ o(∆))U(t+∆) + (λ∆+ o(∆))

∫
max[W̃ , U(t+∆)]dF (W̃ )]

and diving by ∆ yields

rU(t)− [U(t+∆)− U(t)]

∆
= b− (λ+

o(∆)

∆
)U(t+∆) + (λ+

o(∆)

∆
)

∫
max[W̃ , U(t+∆)]dF (W̃ )]

and taking the limit as ∆ → 0

rU(t) = b+ λ[

∫
max[W̃ , U(t)]dF (W̃ )]− U(t)] + U̇(t) (6)

since o(∆)
∆ → 0 as ∆ → 0 and

U̇(t) = lim
∆→0

[U(t+∆)− U(t)]

∆
.

In equation (2) U(t) is the “asset” or “option” value of search activity. In this interpretation, Equation (2) prices
the option by requiring that the opportunity cost of holding it (the left hand side) be equal to the current income
flow, plus the expected capital gain flows (the product of the arrival frequency λ and the expected capital gain given
an offer arrival), and a pure rate of capital gain or loss attributable to waiting another instant for an offer arrival.
The value of an optimal search strategy must also satisfy the transversality condition

lim
t→∞

U(t)e−rt = 0

In the stationary case U(t) = U and the asset value function reads

rU = b+ λ[

∫
max[W̃ , U)]dF (W̃ )]− U ].
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Again, the reservation value function can be written without max operator as

rU = b+ λ[

∫ WMAX

U

[W̃ − U ]dF (W̃ )

.
If W̃ is degenerate and can take only 1 possible value W and if the labor market is viable (W > U) the asset

function reads
rU = b+ λ[W − U ]

which is the simplest value function we will be playing with, and the one that is used in the baseline matching model
(see Handout #2).

1.1.4 Solving the time-varying value function

This is useful for solving and integrating forward time varying value functions.

(δ + r)J(t) = p(t)− w(t) +
d

dt
J(t) (7)

Rewrite it as
J̇ − (δ + r)J(t) = −p(t) + w(t)

where J̇ = d
dtJ(t). Multiplying both sides by e−(δ+r)t yields

e−(δ+r)t[J̇ − (δ + r)J(t)] = e−(δ+r)t[−p(t) + w(t)] (8)

Noting that in the LHS

e−(δ+r)t[J̇ − (δ + r)J(t)] =
∂

∂t
[e−(δ+r)tJ(t)]

we can integrate from to t up to infinite both sides of equation 8to yield∫ ∞

t

∂

∂s
e−(δ+r)sJ(s)ds = −

∫ ∞

t

e−(δ+r)s[p(s)− w(s)]ds

∣∣∣e−(δ+r)sJ(s)
∣∣∣lim s→∞

t
= −

∫ ∞

t

e−(δ+r)s[p(s)− w(s)]ds

or simply

lim
s→∞

e−(δ+r)sJ(s)− J(t)e−(δ+r)t = −
∫ ∞

t

e−(δ+r)s[p(s)− w(s)]ds

Using the transversality condition
lim
s→∞

e−rsJ(s) = 0

the value function reads

J(t) = e−(δ+r)t

∫ ∞

t

e−(δ+r)s[p(s)− w(s)]ds

or

J(t) =

∫ ∞

t

e−(δ+r)(s−t)[p(s)− w(s)]ds
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