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Course Logistics and Requirements

I We mainly focus on very recent papers in empirical labor
economics

I Useful auxiliary readings are
“Labor Economics” by Cahuc, Carcillo and Zylberberg (CCZ),
“Lectures in Labor Economics” by Acemoglu and Autor (AA).

I christoph.albert@carloalberto.org
(office hours: before class or by appointment)
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Weekly Presentations

One presentation by a student at the beginning of each class. You
can choose a paper from the reading list (in moodle) based on
first-come first-served basis.
The presentation should answer the following questions

1. What is the research question?
2. What are the methods used to answer this questions
3. What are the strengths and weaknesses of the approach to

answering that question?
4. How does this work advance knowledge on the question, i.e,

what’s the contribution?
5. What would be one or two valuable next steps to advance the

question?
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Research Projects/Proposals

Proposal or project of no more than 3500 words

I Pose a research question and explain why it is important.
I Summarize the state of knowledge on this question.
I Explain your idea for advancing knowledge on this question.
I Present the research plan: empirical design, experimental

design, simple model, etc.
I Discuss your implementation strategy: data requirements,

experimental setting, etc.
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Projects vs Proposals

For proposals:
I Discuss the next steps you plan to take to implement this

strategy as well as the roadblocks you may face
I We do not expect to see any preliminary results

For projects:
I Describe your data sources and implement your empirical

strategy
I A full replication package including all codes and data used to

generate your results as well as a Readme file will be part of
the assessment.

A note on grading of research proposals vs projects:
Requirements for a good grade in terms of the craft, clarity, and
specificity will be higher for a proposal.
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Human capital: Introduction

Human capital:

I Set of skills and abilities that contribute to productivity
I Might be multidimensional, and might be inherent (e.g.

related to genes) or acquired (e.g. schooling)
I May generate private and social returns (externalities)

Human capital investment:

I Activity which increases the stock of human capital
I Subject to choice: individual schooling decisions, design of

educational systems
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Human capital: Introduction

Alternative views and aspects of human capital (see AA’s book):

Becker (1964)

I Investment into human capital improves productivity

Nelson and Phelps (1966)

I Ability to adapt to changing environments and technological
innovations

Bowles-Gintis (1976)

I “Soft skills” to adapt to organizations and capitalist society

Spence (1974)

I Formal education “signals” inherent ability
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General and specific human capital

Human capital theory by Gary Becker and others (in 1960s):

I Education and training raises workers’ productivity
I Individuals invest in human capital just as firms invest in

physical capital

We focus on two aspects:

1. General vs. specific human capital (brief reminder)
2. Optimal investments into human capital over the life cycle
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General and specific human capital

Workers invest into formal schooling but also participate in
on-the-job training in a diverse set of skills.
Becker distinguished two types of HC:

I General HC: general skills effective at all or most firms
I Specific HC: effective only at one firm

Simple model :

I Period 1: worker produces y1 and can be trained at cost H
I Period 2: worker produces y2(H), with y ′2 > 0 and y ′′2 < 0

Free market entry implies zero-profit condition for firm:

w1 +w2 +H = y1 + y2(H) (1)
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General human capital
Assume on-the-job training generates general HC
I Trained worker produces y2(H) at all firms in the 2nd period.

Under competitive markets, what will other firms offer?
I As MP=w, the worker gets offered w2 = y2(H)

What will the firm that provided the training offer?
I Firm that provided training must follow suit to retain the

worker. Equation (1) simplifies to

w1 = y1−H

Implications:
I Worker must bear costs of general training, directly or

indirectly (e.g. apprenticeship at reduced wage)
I Rationalizes why educational investments are often individually

or publicly funded
I Other contract types by firms to avoid losses through training?
I Key difference to physical capital?
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Specific human capital
Assume training generates specific HC

I Trained worker produces y2(H) at firm that provided training
and y2(0) at other firms

I To retain worker, firm has to pay at least w2 = y2(0) < y2(H)
and would make zero profits if

w1 = y1−H + (y2(H)−y2(0))

Implications:

I Firm might bear costs of specific training
I Post-training wage < marginal productivity (but above

productivity at other firms) → neither worker nor firm wants
to terminate employment contract and fired workers
experience wage loss (→ “scarring” literature)

I Can explain “last hired, first fired” rule during economic
downturns (older workers have more specific job training)
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Figure: Age-earnings profiles

Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 323

Figure 2. Age–earnings profiles, 1940, 1960, 1980.
Source: Heckman, Lochner and Todd (2006): 1980 Census, white males
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Human capital over the life cycle

Age-earnings profiles follow a particular pattern:

I Earnings increase with age, but are flat or declining before
retirement

I Higher education = steeper profiles, so age-earning profiles
cross (→ life-cycle bias)

I Higher education = higher earnings (→ returns to education)

These pattern can be rationalized with a life-cycle model of human
capital accumulation.
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Human capital over the life cycle

A life-cycle model of human capital accumulation, based on
Ben-Porath (1967). Assumptions (see Section 2.2.1 in CCZ or
Chapter 1 in AA’s book):

I Human capital is a one-dimensional object
I Individuals live in continuous time from t = 0 until T
I Spend fraction of time σ(t) on HC accumulation and 1−σ(t)

on work
I Law of motion for HC

ḣ(t) = θσ(t)h(t) (2)

where θ is efficiency of HC accumulation (“learning speed”)
I Wage = f(productivity) = Ah(t)(1−σ(t))
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Human capital over the life cycle

Assume individuals maximize total wage gain over the life cycle (i.e.
no credit constraints or non-pecuniary benefits of education)

Ω =

T∫
0

e−rt [Ah(t)(1−σ(t))]dt (3)

where r is the interest rate.
Trade-off between opportunity costs (lost earnings) and benefits
(higher future earnings) implies an optimal schooling duration s∗,

s∗ =

{
T + 1

r ln( θ−r
θ

) if θ ≥ 1
1−e−rT

0 otherwise
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Human capital over the life cycle

The optimal duration of schooling

s∗ =

{
T + 1

r ln( θ−r
θ

) if θ ≥ 1
1−e−rT

0 otherwise

I increases with life expectancy T
I individuals or populations with longer expected life-span will

acquire more human capital.
I disease will reduce human capital investments (e.g. Manuelli

and Yurdagul, 2020)
I increases with efficiency θ

I most efficient learner spends longest time in education

I decreases with interest rate r
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Extended model with three phases of HC accumulation
For a more realistic hump-shaped profile for wages, consider the
extended law of motion (CCZ 2.3.1),

ḣ(t) = θg(σ(t)h(t))−δh(t),

where δ ≥ 0 is the rate of depreciation of knowledge and the
function g is concave (g ′ > 0 and g ′′ < 0)
Phase 1: σ(t) = 1

I Full-time education while opportunity costs (foregone
earnings) are small and returns large (many working years left)

Phase 2: σ(t) ∈ (0,1)

I Some education, some work (e.g., on-the-job training)

Phase 3: σ(t) = 0

I No education, HC and earnings decline due to depreciation
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Human capital over the life cycle

206 Part One Chapter 4

yields l(T) 5 Ae2rT/ug′(0). For l(T) 5 0 to obtain, it is therefore necessary to assume
that g′(0) 5 1`, which is a standard hypothesis.

If we substitute the expression of l(t) defined by (4.7) in (4.8), we arrive at the
linear differential equation dl(t) 2 l̇(t) 5 Ae2rt . It appears that l(t) 5 Ae2rt/(r 1 d) is
a particular solution of this equation. l(t) 5 cedt , where c is any constant, is a solu-
tion of the homogeneous equation dl(t) 2 l̇(t) 5 0. The general solution is obtained
by adding the particular solution to the solution of the homogeneous equation, which
gives us l(t) 5 cedt 1 Ae2rt/(r 1 d). Finally, l(T) 5 0 yields the value of the constant c.
After some calculations, we find c 5 2Ae2(r1d)T/(r 1 d), and the multiplier l(t) is thus
expressed:

l(t) 5
Ae2rt

r 1 d

[
1 2 e2(r1d)(T2t)

]
(4.9)

The multiplier l(t) represents the marginal value of human capital at date t. Rela-
tion (4.9) indicates that this value decreases with age to reach zero value at date T,
symbolizing the end of working life. The terminal condition s(T) 5 0 and the expres-
sion (4.9) of the marginal value of capital allow us to determine the values of s(t) and
of the stock of human capital h(t) thanks to the first-order condition (4.7) and the law
of motion of human capital (4.6). Wage earnings w(t) 5 A [1 2 s(t)]h(t) are immediately
deducible.

2.3.2 Calibration Exercises
It is not possible to arrive at completely explicit analytical expressions for functions h(t)
and s(t). Still, by taking simple functional forms and reasonable values for the param-
eters, this model enables us to reproduce wage earnings over the life cycle similar to
those generally observed in reality. By way of illustration, figure 4.9 represents the evo-
lution of s(t), w(t), and h(t), assuming g(s) 5 s0.71, A 5 0.75, d 5 0.06, r 5 0.05, h0 5 5,
T 5 60, and u 5 0.5. The model is thus calibrated on annual data with a discount factor
r worth 5%. The 60-year horizon of working life is justified by the age of retirement,
which is 65 in many countries, and the onset of schooling, which normally occurs at
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F igure 4.9
The law of motion of time dedicated to education (graph on the left), stock of human capital (dotted line in the graph on
the right), and wage gains (solid line in the graph on the right) in the human capital model for an efficiency coefficient
u 5 0.5.
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Human capital over the life cycle

Education and Human Capital 207

0.4

0.2

0

0.6

0.8

1

10 20 30 40 50 600

20

10

0

30

40

50

10 20 30 40 50 600

σ

t (years) t (years)

h, w

F igure 4.10
The law of motion of time dedicated to education (graph on the left), stock of human capital (dotted line in the graph on
the right), and wage gains (solid line in the graph on the right) in the human capital model for an efficiency coefficient
u 5 0.4.

around age 5. Figure 4.9 reproduces very accurately the duration of schooling and the
evolution of wage earnings for holders of a degree from a college in the United States. It
shows that individuals follow a full-time course of studies—s(t) 5 1—for 16 years, but
after that they invest less and less in training. The profile of wage earnings is increasing
and concave and reaches a maximum of $60,000 at around 10 years before retirement.

Interestingly, it is possible to represent the difference between the behaviors and
the earnings of college and high school graduates by modifying the value of the effi-
ciency parameter u exclusively. Figure 4.10 does indeed show that when u has the value
0.4 (the values of all the other parameters remaining unchanged), we obtain a wage pro-
file and a duration of full-time study corresponding to those of a high school graduate:
schooling lasts only 12 years, and the wage reaches a maximum of a little under $30,000
at around 10 years before retirement.

These results show that in this model of human capital, the heterogeneity in abil-
ities reflected by parameter u explains to a large extent both educational behavior and
the labor earnings that flow from it.

2.3.3 Extensions of the Human Capital Model
The model of human capital in which individuals choose the time they wish to dedicate
to training reproduces very well the time path of earnings over the life cycle. Various
extensions of this model have been proposed for the purpose of explaining other char-
acteristics of the professional life of an individual.

For example, the amount of hours worked and hourly earnings vary over the
course of the life cycle. In a typical profile, the hourly wage begins by increasing and
reaches a maximum before retirement. The amount of hours worked also increases at
the outset but peaks earlier than the hourly wage. By introducing hours worked into the
human capital model, we are able to take these characteristics into account. To that end,
we must assume, as in chapter 1, that the preferences are represented by a utility func-
tion U(C, L) increasing with consumption C and leisure L. It is then possible to show
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Other determinants of life cycle profiles

This model can help us understand life-cycle profiles in earnings and
working hours. But other factors may matter:

Alternative models for HC accumulation:

I “Learning-by-doing” and experience effects

Alternative mechanisms:

I “Search capital” or “Job ladder”, as older individuals had more
time to search for a better job (→ Search and monopsony
models, such as Burdett and Mortensen 1998)
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The Mincer regression

As noted by Mincer (1958, 1974), our simple life-cycle model of
human capital accumulation implies an earnings function of the
form (CCZ 4.1.1)

logw(si ) = logw(0) + ρsi

Derivation from Compensating Differences Model:
Let the present value of the income stream be

V (s) = Y (s)
∫ T

s
e−rtdt =

Y (s)

r
(e−rs − e−rT )

Equilibrium across schooling levels requires:

lnY (s) = lnY (0) + rs + ln
(

(1− e−rT )/(1− e−r(T−s))
)
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The Mincer regression

The extended model with on-the-job learning implies
the so-called Mincer regression (CCZ 4.1.2)

logwi = β0 + β1si + β2xi + β3x
2
i + εi

where si is formal years of schooling and xi is labor market
experience (interpreted as on-the-job learning), and β1 > 0, β2 > 0
and β3 < 0 are functions of the efficiency of HC accumulation.

Key implications (Heckman, Lochner and Todd, 2006):

1. Log earnings are linear in schooling
2. Experience-earnings (log) profiles are parallel across schooling

levels
3. Age-earnings (log) profiles diverge with age
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Figure: Log earnings are linear in schooling? US data
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Figure: Experience-earnings (log mean) profile

322 J.J. Heckman et al.

Figure 1b. Experience–earnings profiles, 1970–1990.

Source: Heckman, Lochner and Todd (2006)
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Figure: Age-earnings (log mean) profile

Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 323

Figure 2. Age–earnings profiles, 1940, 1960, 1980.
Source: Heckman, Lochner and Todd (2006)
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Returns to schooling

The Mincer equation,

logwi = β0 + β1si + β2xi + β3x
2
i + εi (4)

where si is schooling, xi is labor market experience.
A puzzling finding:

I OLS estimates of Mincer equation imply that in the US, the
returns to an additional year of schooling are ten percent or
more (e.g., β̂1 ≈ 0.12 in Heckman et al. 2006)

I Few other investments have such high returns. Why are not
more people attending university?

Two possible answers:

1. OLS estimates of β1 are biased (omitted variable bias)
2. Heterogeneity in returns/costs to education (sorting on gains)
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Internal rate of return to schooling

Internal rate of return (IRR):

I Defined as the rate of return that equates the net present
value of all benefits and costs from an investment

I Under certain conditions, β1 from the Mincer regression is the
IRR to schooling (see Heckman, Lochner and Todd 2006)
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Empirical applications

Empirical applications:

1. Bhuller, Mogstad and Salvanes (2017) on returns to
education, lifecycle bias and omitted variable bias (and LATE)

2. Nybom (2017) on returns to education and selection on gains
(and MTE)
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Omitted variable bias
Abstract from experience in eq. (4) and assume that εi partially
reflects unobserved “ability” ai , such that εi = γai + ε̃i and

logwi = β0 + β1si + γai + ε̃i (5)

where ε̃i is uncorrelated with si or ai .
The probability limit of the OLS estimator of logwi on si is then

plim β̂1 =
Cov(logwi ,si )

Var(si )
= β1 + γ

Cov(ai ,si )

Var(si )

How is this most likely to be biased?
Upward bias (E [β̂1] > β1) if ability tends to increase earnings
(γ > 0) and individuals with high ability tend to have more
schooling (Cov(ai ,si ) > 0).
Note that the latter is in fact implied by the Ben-Porath model (if
“learning speed” in the BP model is related to ai ).
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Omitted variable bias

How to deal with omitted variable bias? Common strategies:
(1) Selection-on-observables approach

I Try to control for “ability” in the Mincer regression, e.g. by
including IQ scores (Grilliches 1977)

(2) Twin approach

I Try to difference out ability from Mincer regression

(3) Instrumental variable approach

I A valid IV predicts schooling (rank condition) and affects
wages only via schooling (exclusion restriction).

I Examples: Date of birth interacted with compulsory schooling
age; compulsory school reforms; distance to college
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Application 1: Bhuller, Mogstad and Salvanes (2017)

Bhuller, Mogstad and Salvanes (2017) apply all three approaches,
using great data:

I Administrative panel data for Norway
I Full population, near career-long earning histories (1967-2014)
I Pre-tax labor income and benefits / post-tax / benefits
I Ability/IQ measures from military enlistment tests
I IV: staggered implementation of compulsory school reform

They estimate a separate Mincer regression at each age (with
municipality and cohort FEs):
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Bhuller, Mogstad and Salvanes (2017): OLS

rors computed from nonparametric bootstrap.14 This estimate suggests that
a discount rate of 9.3% is necessary to equate the present value of earnings
streams across schooling levels.
In the other panels of figure 4, we address concerns over selection bias in

the estimation of the relationship between schooling and earnings over the
life cycle. In each case, we estimate the education premiums separately by
age while controlling for childhood municipality and birth cohort. Col-
umns 2–4 of panel A in table 2 translate the age-specific education premiums
into IRR, following equation (4). Panel B summarizes how these education
premiums vary across the life cycle by estimating the effect of schooling on
average earnings over different age intervals. Panel C displays the education
premium in the undiscounted average of lifetime earnings (!b). This panel
also reports the impact of schooling on the annuity value of the sum of

14 We use 250 bootstrap replications. Throughout the paper, in each iteration of
the bootstrap we reestimate the education premiums so that the standard errors ac-
count for the fact that b̂a is itself an estimated object.

FIG. 4.—Estimates of age-specific education premiums. This figure graphs ordi-
nary least squares (OLS), IQ control, instrumental variable (IV), and twin fixed
effects (FE) estimates of the age-specific education premiums in equation (6). All
regressions include fixed effects for childhood municipality and birth cohort. Stan-
dard errors are heteroskedasticity robust and are two-way clustered at the cohort
and municipality levels. Shaded areas show 95% confidence intervals (CIs).

Earnings, Education Premiums, and Rates of Return 1005

This content downloaded from 163.117.204.062 on October 28, 2018 16:27:54 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
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Bhuller, Mogstad and Salvanes (2017): SoO approach

rors computed from nonparametric bootstrap.14 This estimate suggests that
a discount rate of 9.3% is necessary to equate the present value of earnings
streams across schooling levels.
In the other panels of figure 4, we address concerns over selection bias in

the estimation of the relationship between schooling and earnings over the
life cycle. In each case, we estimate the education premiums separately by
age while controlling for childhood municipality and birth cohort. Col-
umns 2–4 of panel A in table 2 translate the age-specific education premiums
into IRR, following equation (4). Panel B summarizes how these education
premiums vary across the life cycle by estimating the effect of schooling on
average earnings over different age intervals. Panel C displays the education
premium in the undiscounted average of lifetime earnings (!b). This panel
also reports the impact of schooling on the annuity value of the sum of

14 We use 250 bootstrap replications. Throughout the paper, in each iteration of
the bootstrap we reestimate the education premiums so that the standard errors ac-
count for the fact that b̂a is itself an estimated object.

FIG. 4.—Estimates of age-specific education premiums. This figure graphs ordi-
nary least squares (OLS), IQ control, instrumental variable (IV), and twin fixed
effects (FE) estimates of the age-specific education premiums in equation (6). All
regressions include fixed effects for childhood municipality and birth cohort. Stan-
dard errors are heteroskedasticity robust and are two-way clustered at the cohort
and municipality levels. Shaded areas show 95% confidence intervals (CIs).

Earnings, Education Premiums, and Rates of Return 1005

This content downloaded from 163.117.204.062 on October 28, 2018 16:27:54 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

rors computed from nonparametric bootstrap.14 This estimate suggests that
a discount rate of 9.3% is necessary to equate the present value of earnings
streams across schooling levels.
In the other panels of figure 4, we address concerns over selection bias in

the estimation of the relationship between schooling and earnings over the
life cycle. In each case, we estimate the education premiums separately by
age while controlling for childhood municipality and birth cohort. Col-
umns 2–4 of panel A in table 2 translate the age-specific education premiums
into IRR, following equation (4). Panel B summarizes how these education
premiums vary across the life cycle by estimating the effect of schooling on
average earnings over different age intervals. Panel C displays the education
premium in the undiscounted average of lifetime earnings (!b). This panel
also reports the impact of schooling on the annuity value of the sum of

14 We use 250 bootstrap replications. Throughout the paper, in each iteration of
the bootstrap we reestimate the education premiums so that the standard errors ac-
count for the fact that b̂a is itself an estimated object.

FIG. 4.—Estimates of age-specific education premiums. This figure graphs ordi-
nary least squares (OLS), IQ control, instrumental variable (IV), and twin fixed
effects (FE) estimates of the age-specific education premiums in equation (6). All
regressions include fixed effects for childhood municipality and birth cohort. Stan-
dard errors are heteroskedasticity robust and are two-way clustered at the cohort
and municipality levels. Shaded areas show 95% confidence intervals (CIs).
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I Estimated returns decrease when controlling for IQ
I Suggestive of upward ability bias in OLS estimates, but the

estimates do not drop by much
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Bhuller, Mogstad and Salvanes (2017): IV approach

Their IV approach exploits the gradual roll-out of compulsory
school reform across counties (similar reforms have been studied in
the US, UK, Sweden and other countries)

I the reform increases schooling duration (“first stage”)
I reform has biggest effect on those with low schooling
I municipalities are treated at different times (“event study”, but

that label was not yet fashionable in 2017)
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Bhuller, Mogstad and Salvanes (2017): IV approach

Alternative Strategies
The IV model identifies the education premiums among persons obliged

to stay in school longer because of compulsory school laws. Because of the
local nature of these estimates, we will also apply two alternative identifica-
tion strategies that are currently in use in the literature.
Rather than using an instrument, our second strategy attempts to control

directly for differences in ability when estimating equation (6). To this end,
we use information on ability test scores fromNorwegian military records.
In Norway, military service is compulsory for all able males. Before enter-
ing the service, their medical and psychological suitability is assessed; this
occurs for the great majority around their 18th birthday.11 The ability test
scores are available only for cohorts born in 1950 or later. Our ability sam-

FIG. 2.—Graphical illustration of the instrumental variable (IV) approach. For
each municipality, we recenter the data such that time zero is the year in which
the reform was implemented. Variables are residuals from a regression on birth co-
hort andmunicipality fixed effects (adding in a common intercept). For each individ-
ual, wemeasure average lifetime earnings as the undiscounted sumof annual earnings
divided by the number of years the individual is observed over ages 17–62 in our data.

11 The test scores may influence the nature of the military service and, as a result,
the scores may affect individuals’ subsequent choices of schooling. If this is the case,
then controlling for test scores may bias the estimates of education premiums and
IRRs.
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Bhuller, Mogstad and Salvanes (2017): IV approach

rors computed from nonparametric bootstrap.14 This estimate suggests that
a discount rate of 9.3% is necessary to equate the present value of earnings
streams across schooling levels.
In the other panels of figure 4, we address concerns over selection bias in

the estimation of the relationship between schooling and earnings over the
life cycle. In each case, we estimate the education premiums separately by
age while controlling for childhood municipality and birth cohort. Col-
umns 2–4 of panel A in table 2 translate the age-specific education premiums
into IRR, following equation (4). Panel B summarizes how these education
premiums vary across the life cycle by estimating the effect of schooling on
average earnings over different age intervals. Panel C displays the education
premium in the undiscounted average of lifetime earnings (!b). This panel
also reports the impact of schooling on the annuity value of the sum of

14 We use 250 bootstrap replications. Throughout the paper, in each iteration of
the bootstrap we reestimate the education premiums so that the standard errors ac-
count for the fact that b̂a is itself an estimated object.

FIG. 4.—Estimates of age-specific education premiums. This figure graphs ordi-
nary least squares (OLS), IQ control, instrumental variable (IV), and twin fixed
effects (FE) estimates of the age-specific education premiums in equation (6). All
regressions include fixed effects for childhood municipality and birth cohort. Stan-
dard errors are heteroskedasticity robust and are two-way clustered at the cohort
and municipality levels. Shaded areas show 95% confidence intervals (CIs).
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I IV estimates similar as OLS estimates, but much noisier
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Bhuller, Mogstad and Salvanes (2017): Twin approach
I Compare difference in schooling of twins with their difference

in earnings (6,434 monozygotic and dizygotic twins)
I Twins have more similar abilities than other siblings (e.g.

monozygotic twins share genes).
I If they have the same ability then differencing a Mincer

regression such as eq. (5) for twins A and B ,

log(wA
i )− log(wB

i ) = β1(sAi − sBi ) + γ(aAi −aBi ) + ε̃
A
i − ε̃

B
i

would eliminate the ability bias (Griliches 1979)
I But does differencing eliminate more variation in the omitted

variable (ability) or the regressor of interest (schooling)? In
BP model schooling depends on ability (“learning efficiency”)!

I Mixed evidence: Bhuller et al find no systematic differences,
but Sandewall, Cesarini and Johannesson (2014) find that IQ
and educational differences do correlate within twin pairs.

44 / 89



Bhuller, Mogstad and Salvanes (2017): Twin approach

rors computed from nonparametric bootstrap.14 This estimate suggests that
a discount rate of 9.3% is necessary to equate the present value of earnings
streams across schooling levels.
In the other panels of figure 4, we address concerns over selection bias in

the estimation of the relationship between schooling and earnings over the
life cycle. In each case, we estimate the education premiums separately by
age while controlling for childhood municipality and birth cohort. Col-
umns 2–4 of panel A in table 2 translate the age-specific education premiums
into IRR, following equation (4). Panel B summarizes how these education
premiums vary across the life cycle by estimating the effect of schooling on
average earnings over different age intervals. Panel C displays the education
premium in the undiscounted average of lifetime earnings (!b). This panel
also reports the impact of schooling on the annuity value of the sum of

14 We use 250 bootstrap replications. Throughout the paper, in each iteration of
the bootstrap we reestimate the education premiums so that the standard errors ac-
count for the fact that b̂a is itself an estimated object.

FIG. 4.—Estimates of age-specific education premiums. This figure graphs ordi-
nary least squares (OLS), IQ control, instrumental variable (IV), and twin fixed
effects (FE) estimates of the age-specific education premiums in equation (6). All
regressions include fixed effects for childhood municipality and birth cohort. Stan-
dard errors are heteroskedasticity robust and are two-way clustered at the cohort
and municipality levels. Shaded areas show 95% confidence intervals (CIs).
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Bhuller, Mogstad and Salvanes (2017): IRR
IRR defined as the discount rate ρ that equates ...

62

∑
age=17

r̃
βage

(1+ ρ)age−16 = 0

portional taxes on earnings would have no effect on estimated IRR, as they
reduce earnings by the same proportion regardless of educational choices
(Heckman, Lochner, and Taber 1998, 2008). For the same reason, ignoring
earnings-related pension entitlements would not affect the IRR estimates if
pension income was proportional to lifetime earnings. However, the pro-
gressive nature of the Norwegian tax and pension system may attenuate
the incentives to invest in education.
In the first and second rows of table 3 , we report IRR estimates based on

pretax earnings and after-tax income, respectively. As inmostOrganization
for Economic Cooperation and Development (OECD) countries, the tax
system in Norway is progressive through deductions and surtaxes.17 Com-
paring the estimates, we find that accounting for income taxation reduces
the IRR estimates by around 20%–25%. To understand how taxes affect
the incentives to invest in education, figure 5 presents estimates of the age-
specific education premiums in both pretax earnings and after-tax income
over the life cycle. We can see that progressive taxes not only reduce the ed-
ucation premium in lifetime income but also attenuate the slope of the age-
specific education premiums.
In the third row of table 3 , we report IRR estimates based on ameasure of

after-tax income that includes future earnings–related pension entitlements.
We calculate after-tax pension entitlements on the basis of individuals’ earn-
ings histories, assuming that each individual retires at age 63 anddies at age 85;

Table 3
Internal Rate of Return Estimates Accounting for Taxes
and Pension Entitlements

Full Sample,
OLS Estimate

(1)

IQ Sample, IQ
Control Estimate

(2)

IV Sample,
IV Estimate

(3 )

Twins Sample,
Twin FE Estimate

(4)

Pretax earnings .093*** .083*** .112** .089***
(.002) (.003 ) (.048) (.008)

After-tax income .069*** .068*** .091** .072***
(.002) (.003 ) (.041) (.007)

After-tax income 1
pension income .069*** .069*** .091** .072***

(.002) (.003 ) (.038) (.007)
N 601,290 325,417 577,098 6,434
NOTE.—For each identification strategy, we report estimates of internal rates of return in pretax earnings,

after-tax income, and the sum of after-tax income and pension entitlements. All regressions include fixed
effects for childhood municipality and birth cohort. Standard errors (in parentheses) are computed by non-
parametric bootstrap with 250 replications. FE p fixed effects.
** p< .05.
*** p< .01.

17 Appendix E describes the tax system in more detail and presents marginal and
average tax rates on labor income in different years.
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BMS further show that direct estimates from a Mincer regression
are much smaller (→ Section 4).
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Still a puzzle

Even after addressing omitted variable bias, returns to schooling
appear larger than the market interest rate.
In fact, IV estimates of β1 in

logwi = β0 + β1si + β2xi + β3x
2
i + εi

typically exceed the OLS estimates (see previous slide). Potential
explanations:

I Measurement error
I Invalid instruments
I Publication bias: IV estimates tend to be noisier than OLS →

get published only if they are large (Ashenfelter, Harmon and
Oosterbeek, 1999)

I IV identifies only a local average treatment effect (LATE)
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OLS and IV weights

o
21

s58
gs OLSð Þws Zð Þ:

The sample analog of these two estimands may differ because of endogen-
eity (and sampling error) but not because of nonlinearities.

FIG. C1.—Ordinary least squares (OLS) and instrumental variable (IV) weights
for every grade-specific effect.

The lines in appendix figure C1 report estimates of the OLS and IV
weights (after accounting for covariates).19 They are clearly different: the
OLS weights are high between 10 and 16 years of schooling, while the IV
weights are highest at 9 years of schooling, implying that the effect of mov-
ing from 8 to 9 years of schooling figures prominently in the IV estimates.
This is not surprising, since the instrument adopted is an education reform
that increased compulsory schooling from 7 to 9 years.20
The next step of the approach is to estimate grade-specific effects for ev-

ery age by OLS. These effects come from separate regressions of earnings

19 Simplifying the notation, we can relate the equations above to our estimation
eqq. (6) and (7) by considering that each variable here is expressed as a residual where
municipality and cohort fixed effects are already taken out; the formulas remain
otherwise unchanged.

20 The IV estimates also assign significant weight to 8 years of schooling, suggest-
ing imperfect compliance to the new schooling law.

1022 Bhuller et al.
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From local average to marginal treatment effects

I Returns to schooling may vary across individuals and selection
into schooling may depend on idiosyncratic gains (Carneiro,
Heckman and Vytlacil, 2011)

I In particular, returns might be high for those who acquire
schooling, but lower for those who do not (“selection on gains”)

I IV estimator only identifies gains for “compliers” whose
schooling has changed because of the instrument → LATE

I However, if we have “many instruments” we could estimate
many LATEs for different groups of compliers → marginal
treatment effects (Björklund and Moffitt 1987, Heckman and
Vytlacil 1999, 2005)
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Application 2: Nybom (2017)

Nybom (2017) estimates lifetime earnings returns to college in
Sweden, and how those returns vary with

I Observed characteristics
(cognitive skills, non-cognitive skills, parental income)

I Unobserved characteristics (→ MTE)

Continuous instrument, heavy data requirements to estimate the
MTE semi-parametrically. Instruments used in Nybom (2017):

1. Distance to closest college
2. Short-run fluctuations in local labor market conditions
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Nybom (2017): OLS estimates

Results Using a Normal Selection Model

The traditional approach to estimate themodel in Section II is to specify a
parametric joint distribution for the error terms. Björklund and Moffitt
(1987), for example, estimate the MTE assuming that the error terms are
jointly normally distributed. Although my main focus is on the semipara-
metric approach, results based on a normal selection model are useful as a
comparison.

Table 2
Ordinary Least Squares (OLS) Estimates of the Return to a Year of College

OLS Coefficients

(1) (2) (3) (4) (5)

College dummy (S) .0572 .0571 .0452 .0388 .0391
(.0008) (.0008) (.0008) (.0009) (.0009)

S! A (cognitive) .0067 .0064
(.0006) (.0006)

S! A (noncognitive) .0056 .0050
(.0004) (.0004)

S! A (father’s earnings) 2.0002 2.0005
(.0012) (.0014)

Conditional on A X X X
Interactions S! A X X
Interactions S! X X X
NOTE.—This table reports OLS estimates of the return to college. All specifications control for X, which

includes region and cohort dummies, linear and quadratic terms of father’s and mother’s years of schooling,
number of siblings, and local long-run earnings at age 20. Specifications 3–5 include linear and quadratic terms
of cognitive and noncognitive ability and log of father’s earnings (i.e.,A), specifications 2 and 5 include inter-
actions between S and all components of X, and specifications 4 and 5 include interactions between S and all
components of A. The interaction terms (S! A) are reported as average derivatives. I obtain annualized re-
turns by dividing all estimates by 4.3, which is the average difference in years of schooling for those with S5 1
and those with S5 0. Standard errors (from 1,000 bootstrap replications) are in parentheses.

Table 3
Instrumental Variable (IV) Estimates of the Return to a Year of College

IV Estimates for Different Sets of Instruments

Distance to University
(1)

Local Earnings
(2)

All
(3)

Standard 2SLS .0614 .0809 .0444
(.0277) (.0291) (.0193)

P(Z) as instrument .0448 .0711 .0507
(.0178) (.0254) (.0183)

NOTE.—This table reports IV estimates of the return to college for different sets of instruments: distance
to university at age 20 in col. 1, local short-run earnings in col. 2, and both of these instruments in col. 3.
Row 1 reports two-stage least-squares (2SLS) estimates, and row 2 reports estimates determined using P(Z)
as the instrument (probit first stage). All specifications include second-stage interactions between predicted
college and the components of X and A. I obtain annualized returns by dividing all estimates by 4.3, which
is the average difference in years of schooling for those with S5 1 and those with S5 0. Bootstrapped
standard errors are in parentheses (1,000 replications).
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Potential outcomes (observed/unobserved heterogeneity)

Let S be a binary choice indicator

Si = 0 no college (untreated)
Si = 1 college (treated)

Assume potential outcomes Reminder PO model are

Y0i = µ0(Xi ) +U0i

Y1i = µ1(Xi ) +U1i

where Xi are observed regressors, such as cognitive and
non-cognitive skills.
Idiosyncratic gains from treatment are

Y1i −Y0i = µ1(Xi )−µ0(Xi ) +U1i −U0i
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Generalized Roy model
The propensity score

Pi (x ,z) = Pr(Si = 1|Xi = x ,Zi = z)

denotes the conditional probability to attend college for people with
characteristics Xi = x and instrument Zi = z .
Instrument ZI is assumed to be valid: affects college decision (rank
condition) but not potential outcomes (exclusion restriction).
However, there is unobserved heterogeneity. Let USi represent (the
quantiles of) an idiosyncratic latent “resistance” (or “distaste”) to
college, such that

Pi (x ,z) > USi individual attends college (Si = 1)
Pi (x ,z) = USi individual is indifferent
Pi (x ,z) < USi individual does not attend college (Si = 0)
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MTE: Definition

MTEs are defined as

MTE (Xi = x ,USi = uS) = E [Y1i −Y0i |Xi = x ,USi = us ] (6)

where USi is the individual unobserved resistance to treatment

MTE may vary with Xi or USi (i.e. U1−U0 may correlate with US)

I Slope of MTE with respect to X : “observed heterogeneity”
I Slope of MTE with respect to Us : “unobserved heterogeneity”

55 / 89



MTE: Estimation

MTE can be estimated parametrically or semi-parametrically.
Nybom (2017) implements both approaches, but focuses on
semi-parametric local IV approach:

1. Estimate E [Yi |Xi = x ,P(Zi ) = p] semi-parametrically for all
values of x ,p = uS

2. Compute derivative with respect to p, as (Carneiro et al. 2011)

MTE (Xi = x ,USi = uS) =
∂E [Yi |Xi = x ,P(Zi ) = p]

∂p

∣∣∣∣
p=us

(7)

This MTE can then be aggregated for certain subgroups to
compute the ATE, ATT or other treatment effects of interest.
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MTE: Continuous instrument

Local IV approach identifies the MTE under minimal assumption.
However, we require a continuous instrument to generate marginal
expansions in college attendance.

To understand the intuition, assume (from Cornelissen, Dustmann,
Raute and Schönberg, 2016):

I those living right next to college always attend college
I those extremely far away from college never attend college
I Gradually decreasing distance will then push gradually “all

types” (US) into college

See figure (next slide)
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MTE: Continuous instrument

equally sized bins identified by a bin identifier or grouping variable Ri,
which is a function of Zi and assumes the integer values of 1 to 20 to in-
dicate in which bin a given value of Zi is situated. This is illustrated in
Fig. 2, where the horizontal axis is partitioned into 20 bins, and the
bin height indicates the average treatment probability in each bin,
E[Di |Ri,Xi=x]. From any pair of two points Ri=r and Ri=r′, and with
corresponding data on the average outcome by bin, conditional on Xi,
a Wald estimator of the form E½Yi jRi ¼ r;Xi ¼ x#−E½Yi jRi ¼ r0;Xi ¼ x#

E½Di jRi ¼ r;Xi ¼ x#−E½Di jRi ¼ r0;Xi ¼ x# can be construct-
ed, each of which identifies LATE(r,r′,x), a covariate-specific LATE for
compliers with a move of the discretized instrument from r to r′.

2.3.2. Aggregating pairwise (covariate-specific) LATEs into one effect
An efficient way of obtaining an overall IV estimate that aggregates

the covariate-specific Wald estimates LATE(r,r′,x) across r–r′ pairs and
across x into one overall effect is provided by 2SLS, using group indicator
dummies for the values of Ri as instruments, fully saturating the first and
second stage in the covariates, and interacting the instruments in thefirst
stage with the covariates. As discussed in Section 2.2.2, this provides a
variance-weighted average of covariate-specific LATEs. To further see
how 2SLS using group indicator dummies aggregates the pairwise
LATEs across r-–r′ pairs, it is useful to abstract from covariates by assum-
ing again a subsample with covariates fixed at Xi=x. Fig. 3 based on sim-
ulated data, which plots E[Yi |Ri,Xi=x] against E[Di |Ri,Xi=x], helps to
illustrate how the variousWald estimators are aggregated. The 2SLS esti-
mator can be thought of as fitting a straight line through the points in
Fig. 3 using generalized least squares (GLS) estimation because grouped
data have a known heteroscedasticity structure (Angrist, 1991). The
resulting weights that each covariate-specific LATE receives are positive
and sum to one. The weights are positively related to the strength of
the first-stage E[Di |Ri=r,Xi=x]−E[Di |Ri=r′,Xi=x] and to group size
(i.e., number of observation in each bin).16

Whereas it is fairly straightforward to describe for whom LATE with
a single binary instrument is representative (the group of compliers
with that instrument), this is no longer the case with a continuous
instrument—since the overall IV effect is now representative for com-
pliers with changes between all values of the instrument, with different
weights attached to groups of compliers at different pairs of values. An

aggregate IV estimate may also hide interesting information, such as
which pairs of values of the instrument shift a particularly large group
of individuals, or a group of individualswith particularly large treatment
effects, into treatment.

2.4. Control function approach: the correlated random coefficients model

An alternative to conventional linear IV estimation is to use the in-
strument to construct a control function, and to include this into the re-
gression alongside the endogenous variable (seeWooldridge (2015) for
an overview of control function methods). A well-known model for
which a control function estimator has been proposed is the correlated
random coefficients model (Card, 2001; Heckman and Vytlacil, 1998;
Heckman and Robb, 1985). As we explain below, the control function
estimator for this model allows estimation of the ATE and yields some
insight into the pattern of selection in the unobservables, albeit under
stronger assumption than IV estimation. Consider the outcome of
Eq. (6) in which we assume linearity in the regressors, μ0(Xi)=Xiβ0

and μ1(Xi)=Xiβ1, and for amore compact notation rewrite the equation
as

Yi ¼ Xiα þ Di
~Xiθþ Diδi þ εi; ð16Þ

with α=β0, θ=β1−β0, δi=U1i−U0i, εi=U0i, and where ~Xi ¼ Xi−X
denotes the covariates centered around their sample means. This is a

Fig. 2. Treatment probability in discrete bins of a continuous instrument. Notes: Based on
hypothetical data, the bins in this figure show the probability of treatment in a sample
with fixed covariates (E[D = 1,R,X = x]) as a function of a discrete variable R, which has
been generated by grouping the values of the continuous instrument depicted in Fig. 1
into 20 equally spaced bins. The dotted line reproduces the function depicted in Fig. 1.
Data source: Simulated hypothetical data.

Fig. 3. Grouped data IV. Notes: Based on hypothetical data, the figure plots the average
outcome against the average treatment probability in a sample with fixed covariates for
20 groups, which are equal to the bins depicted in Fig. 2 and correspond to 20 equally
sized bins of an underlying continuous instrument. Grouped data IV can be visualized as
fitting a line through these points. Data source: Simulated hypothetical data.

16 A slope estimated by ordinary least squares is equal to a weighted average of all pos-
sible combinations of pairwise slopes between any two points, with a larger weight on
slopes between points that are further apart on the horizontal axis. This is because β ̂

OLS
¼

covðx;yÞ
varðxÞ ¼ ∑n

i¼ 1∑
n
j¼ 1ðyi−y j Þðxi−x j Þ

∑n
j¼ 1ðxi−x jÞ2

¼
∑n

i¼ 1∑
n
j¼ 1

ðyi−y j Þ
ðxi−x j Þ

ðxi−x j Þ2

∑n
j¼ 1ðxi−x j Þ2

. In Fig. 3, the distance between two

points on the horizontal axis is exactly equal to the first stage E[Di|Ri=r]−E[Di|Ri=r′]
of the associated LATE, therefore LATEs with a stronger first stage get a higher weight. If
in addition the slope is estimated byGLS, then LATEs associatedwith larger groups receive
a higherweight, becauseGLSweights observations inversely to their variance, and the var-
iance of groups means decreases in group size.

Fig. 1. Treatment probability as a function of a continuous instrument. Notes: Based on
hypothetical data, the figure shows the effect of a continuous instrument Z on the
probability of treatment in a sample with fixed covariates (E[D = 1,Z,X = x]). For
example, the horizontal axis could represent distance to college and the vertical axis
could represent theprobability to attend college.Data source: Simulatedhypothetical data.

52 T. Cornelissen et al. / Labour Economics 41 (2016) 47–60

Source: Cornelissen, Dustmann, Raute and Schönberg (2016)
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Nybom (2017): Semi-parametric estimates of MTE

Figure: Returns to a Year of College

I now turn to the estimates of the ATE, ATT, and ATU. Since the sup-
port on P is not strictly full, these parameters cannot be estimated in exact
accordance with their definitions. I can, however, compute approximations
of these parameters, denoted gATE, gATT, and gATU, for which I rescale the
weights to integrate to one over the common support.23 Table 4 (col. 2) re-
ports the estimates together with a set of simple tests for self selection on
total heterogeneity. The semiparametric estimate of the gATE suggests a re-
turn to 1 year of college of about 5.7%. As expected, the estimated gATT is
larger and gATUsmaller, although thedifferences are relatively small.Never-
theless, these differences are all statistically significant, thus indicating sort-
ing into college on the basis of total heterogeneity. It is those who actually
have selected into college who, on average, also have the highest returns.
What is more surprising is that the returns for those who have chosen not

to go to college are still significantly positive. This is in contrast with Car-

FIG. 3.—Marginal treatment effect (MTE) byUSestimated by semiparametric lo-
cal instrumental variable analysis. This figure shows point estimates and 95% confi-
dence bands of the MTE from the semiparametric model in equation (5). The model
is estimated using the local quadratic regression procedure described in Section II.
All estimates are conditioned on mean values ofX andA. Standard errors are boot-
strapped (1,000 replications). CI 5 confidence interval.

23 Note, however, that the support is close to full; it is only missing for PðZÞ >
0:99. It would thus require a dramatically different MTE in this small interval for
this approximation procedure to be problematic.
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Nybom (2017): Semi-parametric estimates of MTE

Findings:

I MTE flat → not much heterogeneity in returns to college with
respect to unobserved determinants of college decision

I Difference between lowest and highest MTEs only about 3
percentage points

I MTE decreases in US at lower values of US (selection on
gains)

I MTE increasing in US at higher values of US (negative
selection on gains)
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Heterogeneity in Returns to Observed Characteristics

MTE across the distribution of US;US is an unobserved variable, while the
scalar index on the x-axis in Figure 4 is itself estimated. However, both are
components of expected returns andmay therefore affect selection into col-
lege. Figure 4 implies that the variation in observed heterogeneity is quite
substantial, and the slope of the curve indicates that observed characteristics
impact on returns across the entire distribution. The point estimates sug-
gest that those with the most favorable observed characteristics (i.e., those
that complement formal education the most) on average have a return that
is about 20 percentage points higher than thosewith the least favorable char-
acteristics. In reality, the heterogeneity is even larger, since there is also con-
siderable variation within the groups on the x-axis.
An important question is whether observed heterogeneity matters more

than unobserved heterogeneity. My results suggest that it does. A simple il-
lustration can be provided by comparing the variation in returns attributed
to the scalar indexxðd1 2 d0Þ 1 aðg1 2 g0Þ and the unobserved factorUS, re-
spectively. The standard deviation of the fitted values related to the former
is about 25 times larger than that of the latter. This comparison is of course
sensitive to choice of bandwidths; when moving to lower bandwidths, the

FIG. 4.—Average marginal treatment effect (MTE) by total observed heteroge-
neity. This figure shows the average MTE with 95% confidence bands across the
index of observed heterogeneity. The index is computed by estimatingXðd1 2 d0Þ 1
Aðg1 2 g0Þ for each individual and splitting the sample into 20 uniformly distrib-
uted groups. Standard errors are bootstrapped (1,000 replications).
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Heterogeneity in Returns to Observed Characteristics

Findings:

I Substantial variation in lifetime earnings returns with respect
to observable characteristics

I Lifetime returns are 20 percentage points higher for those with
high cognitive and non-cognitive skills compared to those with
the least favorable combination of characteristics

I Observed heterogeneity much more important than unobserved
heterogeneity

Quality of observables might partly explain difference in results
compared to Carneiro, Heckman and Vytlacil (2011).
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Heterogeneity in Returns to Observed Characteristics

FIG. 5.—Observed ability heterogeneity in the return to a year of college.A, Av-
erage treatment effect (ATE) by cognitive ability. B, ATE by noncognitive ability.
The figures show semiparametric estimates of ATEs with 95% confidence bands
conditional on levels of cognitive and noncognitive ability. Standard errors are boot-
strapped (1,000 replications). CI 5 confidence interval.
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Heterogeneity in Returns to Observed Characteristics

FIG. 5.—Observed ability heterogeneity in the return to a year of college.A, Av-
erage treatment effect (ATE) by cognitive ability. B, ATE by noncognitive ability.
The figures show semiparametric estimates of ATEs with 95% confidence bands
conditional on levels of cognitive and noncognitive ability. Standard errors are boot-
strapped (1,000 replications). CI 5 confidence interval.
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Nybom (2017): Summary

Main findings of Nybom (2017):

I College attendance is based on idiosyncratic gains (ATT >
ATU), but the differences are small and ATU remains positive

I Returns to college increase steeply with cognitive and
non-cognitive abilities
I Individuals at bottom of ability distribution have negative

returns to college
I Individuals at top earn returns that are twice as high as the

average return

I Points to complementarities between education and abilities
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Beyond Mincer

Beyond Mincer and life-cycle bias:

I Estimates of the returns to education are sensitive to age at
measurement, in line with the BP model and Mincer equation.

I A similar “life-cycle bias” may occur in many other contexts
(→ extreme example: intergenerational studies)

I But what about income dynamics within education groups or
conditional on other individual characteristics?

Such questions lead us from the Mincer equation to the broader
literature on income processes.
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Income process literature

The income process literature models the lifecycle profile of income
and related variables.
Interesting debate on whether the shape of income profiles is better
described by HIP or RIP process:

I Restricted income profiles (RIP): individuals are subject to
permanent income shocks (→ random walk)

I Heterogeneous income profiles (HIP): individuals face
individual-specific (and predictable?) income profiles

The distinction matters. In particular, are “permanent income
shocks” as identified in the RIP process really unexpected “shocks”?
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Mello, Nybom and Stuhler (2022)

Mello, Nybom and Stuhler (2022) study the shape of age-earning
profiles in Swedish data. Two parts:

1. Study lifecycle dynamics of child income by parental income
2. Develop a “life-cycle estimator” for intergenerational mobility

We focus on the first step here:

I Key finding: Steeper earnings growth for children from
high-income families, even conditional on their own education

I Consistent with HIP but not RIP; “permanent shocks” in the
RIP model may not be “shocks” at all.

I Recall that in the Ben-Porath model, earnings growth depends
on “learning speed”. Abilities affect earning levels and slopes?
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Table: Heterogeneity in Income Growth by Parental Income (MNS 2022)
Table 2: Heterogeneity in Income Growth by Parental Income (Swedish data)

(1) (2) (3) (4) (5) (6)

Log (Father’s Income)/100
x Age 25-30 13.386*** 3.675*** 3.493*** 5.831*** 1.785*** 1.872***

(0.252) (0.227) (0.263) (0.237) (0.225) (0.262)
x Age 30-35 6.813*** 1.503*** 0.823*** 3.524*** 1.164*** 0.633**

(0.202) (0.204) (0.231) (0.205) (0.204) (0.233)
x Age 35-40 3.188*** 0.139 0.065 1.184*** -0.117 -0.098

(0.193) (0.198) (0.226) (0.199) (0.200) (0.230)
x Age 40-45 0.738*** -0.476* -0.272 0.353 -0.267 -0.133

(0.181) (0.188) (0.216) (0.188) (0.191) (0.220)
x Age 45-50 -0.543** -0.123 -0.277 -0.075 0.035 -0.224

(0.177) (0.183) (0.211) (0.185) (0.187) (0.216)
x Age 50-55 -2.463*** -0.873*** -0.670** -1.308*** -0.539** -0.369

(0.174) (0.179) (0.206) (0.183) (0.184) (0.212)

Education x Age X X X X
Occupation x Age X X X
Skill scores x Age X X
Demographics x Age X

N 950263 950125 744286 919473 919346 720085
R-sq 0.053 0.117 0.122 0.095 0.132 0.137

Notes: Standard errors in parentheses. The dependent variable in each of the columns is the change in log annual income
over the indicated age range. Education distinguishes seven levels of highest educational attainment. Occupation is at
the two-digit level (66 groups). Skill scores are cognitive and non-cognitive skill from the military draft. Demographic
variables are birth order, family size, and an immigrant dummy. All these variables, as well as father’s log lifetime
income/100, are interacted with the indicators for the six age groups. Annual income below 20% of the yearly in-sample
median are excluded.* p < 0.05, ** p < 0.01, *** p < 0.001

factor (HIP) instead of a stochastic shock that would come as a surprise to the individual (RIP).12
Our findings are therefore in line with arguments by Guvenen (2009). However, while Guvenen
(2009) assumes that the individual-specific component is linear in experience, our evidence suggests
that family background matters primarily at young age, and that the sign of its relation to income
growth flips at older age. This non-linear pattern could in turn explain why it is di�cult to detect
the HIP component with covariance lag tests.

The observation that children from high-income parents tend to have steeper income profiles
matters for many distributional questions, in particular for intergenerational research. To avoid bias,
di�erences in income growth by parental background need to be accounted for more systematically.
Failure to do so can lead to substantial bias in estimates of income mobility, as we show next. We

12While our evidence supports the HIP model, many of our arguments relate to properties of the income process
that are common to both models.
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Related topics

Other important topics that for time reasons we cover only briefly:

1. Multiplicity of skills, cognitive vs. non-cognitive skills
2. Early-childhood investments and dynamic complementarity
3. Private vs. social returns to human capital
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Deming (2017)

Human capital may consist of multiple distinct skills. One useful
distinction is between cognitive and non-cognitive skills.
Motivational fact: no increase in returns to to cognitive skills
since 2000 despite skill-biased technical change since 1990s.
→ Slowdown in technical progress?
→ Technical progress substituting cognitive skills?
Evidence by Deming (2017):

I Labor market increasingly rewards social skills
I In 1980-2012, share of U.S. jobs requiring high levels of social

interaction grew by nearly 12 percent
I Employment and wage growth particularly strong for jobs

requiring high levels of both math and social skills
I To explain these findings, Deming proposes a model in which

there is “trade” in tasks and social skills reduce trade costs
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Deming (2017)

FIGURE I
Change in Relative Employment for Cognitive Occupations, 2000-2012
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Deming (2017)
SOCIAL SKILLS IN THE LABOR MARKET 1627
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FIGURE IV

Cumulative Changes in Employment Share by Occupation Task Intensity,
1980–2012

Each line plots 100 times the change in employment share (relative to a 1980
baseline) between 1990 and 2012 for occupations that are above and/or below
the 50th percentile in nonroutine analytical and social skill task intensity as
measured by the 1998 O*NET. Consistent occupation codes for 1980–2012 are
updated from Autor and Dorn (2013) and Autor and Price (2013). See the text and
Online Appendix for details on the construction of O*NET task measures and for
examples of occupations in each of the four categories. Source: 1980–2000 census,
2005–2013 ACS.

share of social skill–intensive occupations since 1980. In contrast,
the employment share of jobs with high math but low social skill
intensity shrank by about 3.3 percentage points over the same
period. This includes many of the STEM jobs shown in Figure I.
The basic pattern in Figure IV is robust to choosing cutoffs other
than the 50th percentile for each type of task.

One possible explanation for the slow growth of high math,
low social skill jobs is that employers cannot find workers to fill
technical and math-intensive positions. In that case, we would
expect relatively greater wage growth for these occupations.
Figure V plots the change since 1980 in real hourly wages for
occupations in each of the four categories. I find that wages for
high math, low social skill jobs grew by only about 5.9% between

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/132/4/1593/3861633 by guest on 16 January 2019
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Deming (2017)1628 QUARTERLY JOURNAL OF ECONOMICS

−.
1

0
.1

.2
.3

1980 1990 20 0 0 20 10

High Social, High Math High Social, Low Math
Low Social, High Math Low Social, Low Math

Occupational Task Intensities based on 1998 O*NET

FIGURE V

Cumulative Changes in Real Hourly Wages by Occupation Task Intensity,
1980–2012

Each line plots the percent change in median hourly wages (relative to a 1980
baseline and in constant 2012 dollars) between 1990 and 2012 for occupations that
are above and/or below the 50th percentile in nonroutine analytical and social skill
task intensity as measured by the 1998 O*NET. Consistent occupation codes for
1980 to 2012 are updated from Autor and Dorn (2013) and Autor and Price (2013).
See the text and Online Appendix for details on the construction of O*NET task
measures and for examples of occupations in each of the categories. Source: 1980–
2000 census, 2005–2013 ACS.

1980 and 2012, compared to about 26% for high math, high social
skill occupations.

Online Appendix Figures A3 and A4 show that employment
and wage growth for social skill–intensive occupations has oc-
curred throughout the skill distribution and is not concentrated
in particularly low- or high-paying jobs.

Online Appendix Tables A5 and A6 estimate employment and
wage growth for jobs requiring different bundles of tasks in a mul-
tivariate framework. The results generally support the growing
importance of social skills after controlling for changes in sex, ed-
ucation, and industry mix. I find particularly strong employment
growth for jobs that are high in both math and social skills. This
pattern has accelerated since 2000. Finally, I note that the strong
growth of social skill–intensive jobs is robust to excluding all

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/132/4/1593/3861633 by guest on 16 January 2019
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Deming (2017)

Main estimating equation:

logwageijt = β1COGi +β2SSi +β3COGi ×SSi +γXijt +δj +ζt +εijt

I Controls: race, gender, region, age (j) and year (t)
I Returns to both types of skills are positive
I β3 is posiitve ⇒ complementarity between skills
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Dynamic complementarity

At what age are HC investments most effective?

I Some evidence that interventions in early life (e.g. preschool
programs, formal childcare) tend to be more effective

This finding can be motivated with an investment model with
dynamic complementarity (Heckman and Cunha 2007, 2009):

I HC investments in later stages are complementary to earlier
investments + self-productivity = dynamic complementarity

I Policy implication: Investments in disadvantaged young
children can be both fair and efficient, while investments in
disadvantaged adolescents might be fair but less efficient.
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Returns to HC investment over age

Education and Human Capital 243
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Rate of return to investment in human capital by age.

Source: Cunha et al. (2006).

Heckman (2000) and Carneiro and Heckman (2003) have brought together the
results of a number of studies on the effectiveness of primary and secondary school-
ing in the United States; they find that expenditure per student and class size have a
weakly significant impact on the probability that students will stay in school longer
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Social returns to education

Education might generate large social returns (returns to society as
a whole, minus private returns):

I knowledge externalities
I education appears to have a negative effect on crime
I ...

But in principle, social returns could also be negative:

I Example: signaling model by Spence (1973)

Social returns are difficult to estimate:

I Example: Moretti (2004) estimates spillovers from share of
college graduates on workers in a city

I Finds large positive externality, in particular on less educated
workers
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Readings

Readings:

I Bhuller, Mogstad and Salvanes (2017): understand main
research designs and source of “life-cycle bias”

I Heckman, Lochner and Todd (2006): Skim through, in
particular Sections 1, 3, 4, 6, 7, 11

I Nybom (2017): Definition and intuition of MTE

82 / 89



Appendix



Human capital over the life cycle
Assume individuals maximize total wage gain over the life cycle (i.e.
no credit constraints or non-pecuniary benefits of education)

Ω =

T∫
0

e−rt [Ah(t)(1−σ(t))]dt (8)

where r is the interest rate. Marginal returns to education at t

∂ Ω

∂σ(t)
= −e−rtAh(t)︸ ︷︷ ︸

opportunity costs

+

T∫
0

e−rzA [1−σ(z)]
∂h(z)

∂σ(t)
dz

= −e−rtAh(t)︸ ︷︷ ︸
opportunity costs

+

T∫
t

e−rzA [1−σ(z)]θh(z)dz (9)

since (see CCZ 2.2.1) ∂h(z)
∂σ(t) = 0 if z < t and ∂h(z)

∂σ(t) = θh(z) if z ≥ t
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Human capital over the life cycle

The derivative of these marginal returns to education with respect
to t is

d

dt

[
∂ Ω

∂σ(t)

]
=−e−rtAḣ(t) + e−rtrAh(t)− e−rtA [1−σ(t)]θh(t)

Plugging in equation (2) yields

d

dt

[
∂ Ω

∂σ(t)

]
= Ah(t)e−rt(r −θ)

I If r > θ (r < θ) the marginal returns to education increase
(decrease) over time
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Human capital over the life cycle

Moreover, the marginal returns to education are always negative at
T . From equation (9)

∂ Ω

∂σ(T )
=−e−rTAh(T ) < 0

Therefore, if r > θ the marginal returns to education are negative
over the whole life cycle [0,T ].

Individuals will invest into education only if (i) they are patient
enough (as measured by r) and (ii) they are sufficiently efficient in
acquiring education.
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Human capital over the life cycle

If r < θ the marginal return to effort decreases over time and is
negative at T

I Individuals stop accumulating HC at date s, defined by
∂Ω

∂σ(s) = 0

I σ(t) = 1 for t < s and σ(t) = 0 for t > s

I h(t) = h0e
θs for t ≥ s.

Plug ∂Ω
∂σ(s) = 0, σ(t) = 0 for t > s and h(t) = h0e

θs for t ≥ s into
equation (9)

∂ Ω

∂σ(s)
= 0 =−e−rsAh(s) +

T∫
s

e−rzAθh(z)dz

Back
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Reminder: Potential outcome model

The “Potential outcome or “Rubin causal” model:

The treatment (e.g. college attendance yes/no)

Di =

{
1
0

individual i receives treatment
individual i does not receive treatment

The observed outcome is a function of potential outcomes

Yi =

{
Y1i

Y0i

if Di = 1 (treated outcome)
if Di = 0 (untreated outcome)

The observed outcome can be written as Yi = Y0i + (Y1i −Y0i )Di ,
where τi = Y1i −Y0i is the individual treatment effect
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Definition of treatment effects
Average treatment effect (ATE):

τATE = E [τi ] = E [Y1i −Y0i ]

Average treatment effect for the treated (ATT):

τATT = E [Y1i |Di = 1]−E [Y0i |Di = 1]

Average treatment effect for the untreated (ATU):

τATU = E [Y1i |Di = 0]−E [Y0i |Di = 0]

Local average treatment effect (LATE):

τLATE = E [Y1i −Y0i |Compliers]

for compliers whose treatment status has switched because of the
instrument → a “local” effect. Back
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