


Multivariate linear 
regression in 
STATA
All regressors enter as a linear function of 
the dependent variable

𝑌 = 𝛽! + 𝛽"𝑋" + 𝛽#𝑋# +⋯+ 𝑒

𝛽" : Predicted increase of Y for a unit
increase of X, holding steady the value of
the other regressors.

If we insert a group of mutually exclusive
dummies (e.g., one dummy for each year)
one of these dummies is excluded to avoid
multicollinearity.

I n this case 𝛽$%%&'#!!! is the predicted
increase in Y in 2000 with respect to the
year category omitted from the regression
(1999 in this case), holding steady the
value of the other regressors.



Non-linear relations between Y (dependent 
var.) and X (independent var.)
If the relationship between Y and X is nonlinear:
• The effect on Y of a change in X depends on the value of X - that is, 

the marginal effect of X is not constant.
• A linear regression is not a correct specification of the relationship 

between Y and X - the functional form is wrong!
• The estimator of the effect of X on Y is biased.

The solution is to estimate a regression function that is nonlinear in X:
𝑌 = 𝑓(𝑋!, 𝑋",… 𝑋#) + 𝑒



How to 
interpret the 
marginal 
effect?



Nonlinear functions of one independent
variable
• There are two main approaches: 

• 1. Polynomials in X 

• • The population regression function is approximated by a quadratic, cubic, 
or higher-order polynomial

• 2. Log transformations
• We transform either Y, X, or both using the natural logarithm

• • Logarithmic specifications allow estimation of percentage relationships of 
interest (elasticity)



Polynomials in X



Cubic polynomial

The joint significance test on 𝛽!"#$ e 𝛽!"#% tells
us that – with a 1% significance level - we
cannot reject the assumption that the correct
specification is quadratic or cubic

The effect of unit age increase on income 
depends on age. We can calculate the average 
of the predicted values of Y at given ages 
(which we denote by "𝑌) and compute the 
difference:

"𝑌 𝑒𝑡à = 𝑥1 − "𝑌(𝑒𝑡à = 𝑥2)

To quantify and test the significance of the 
effect of a unit increase in age from 39 to 40:



Logarithmic functions 
of Y or X



Logarithmic functions



The lin-log case



The log-lin case



The log-log case



Interactions between independent
variables
-It is possible that the effect of an independent variable X on Y depends on the value of a second independent variable
Z. For example:
• --The effect of being in a manual occupation on wages is different between men and women

• --The effect of being in a larger firm is different between men and women.
--To estimate these heterogeneities in the effect of independent variables, interactions are used.
-Interactions are products of two (or more) independent variables. They are themselves independent variables that are 
entered into the regression in addition to the basic independents.
With interactions, a classic regression model with two independent variables

Y=a + b1 X + b2 Z + residual

becomes

Y=a + b1 X + b2 Z + b3 (X*Z) + residual



Interpretation
of interactions

Consider the model

Y=a + b1 X + b2 Z + b3 (X*Z) + residual

There are three kinds of interactions: two categorical variables;
categorical*continous;
two continous variablses.

- Interactions between categorical variables (dummy variables)
b1: effect of X on Y when Z=0

b2: effect of Z on Y when X=0

b1+b3: effect of X on Y when Z=1

b2+b3: effect of Z on Y when X=1

Intuitively: b3 is the additional effect of X on Y when Z=1

Example: is the gender wage gap greater in manual occupations or office jobs?
GWG in clerical jobs: 36.8%
GWG in manual jobs: 36.8% - 5.7%



Interpretation
of interactions

Consider the model

Y=a + b1 X + b2 Z + b3 (X*Z) + residual

- Interaction between continous (Z) and dummy variable (X)
b1: effect of X on Y when Z=0

b2: effect of unit increase of Z on Y when X=0

b1+b3*z: effect of X on Y when Z=z

b2+b3: effect of unit increase of Z on Y when X=1

Intuitively: b3 is the difference in the slope of the relationship between Y and Z
when X=1

-Example:  -does the gender wage gap increase or decrease as firm size increases?

- is the wage premium from firm size greater for men or women?

- GWG when ln(employees)=0: 31.8%
- GWG increase for 1% increase in number of 
employees: + 0.002%
- Income increase for 1% increase in no. of 
employees among women: + 0.047%
- Income increase for 1% increase in no. of 
employees among men: 0.047% + 0.002%



Fixed effects regression (I)
The classic regression model in which individual i is observed 
several times over time (t) can be written:

𝑌!" = 𝛽# + 𝛽$𝑋!" + 𝑒!"
𝛽#and 𝛽$have a causal interpretation if E(𝑒!" | 𝑋!%)=0 ∀𝑗, 𝑡, that is, 
if there are no unobservables that influence both 𝑋!% and 𝑌!"
E(𝑒!" | 𝑋!%)=0 can be difficult to defend. For example, working in
non-manual occupations is correlated with education, and
education has an independent effect on income, but is not
observable in the data.



Fixed effects regression (II)
Education and skill are fairly constant over time for workers. We can divide 
the individual error term into time-constant elements (𝑎!) and idiosyncratic 
elements (𝑢!"):

𝑌!" = 𝛽# + 𝛽$𝑋!" + 𝑎! + 𝑢!"
By including individual fixed effects among the independent variables in the 
regression, I am able to control for 𝑎!.
These fixed effects control for all unobservable individual characteristics that
have influence on 𝑌!", as long as these characteristics are constant over time.
The underlying assumption of the model becomes E(𝑢!" | 𝑋!")=0, which is less
demanding than the assumption E(𝑒!" = 𝑎! + 𝑢!" | 𝑋!")=0



Fixed effects regression (III)
𝑌!" = 𝛽# + 𝛽$𝑋!" + 𝑎! + 𝑢!"

• The interpretation of 𝛽$ does not change when using the fixed effects
regression.

• Variables in 𝑋!" that are constant over time cannot be included because they 
are collinear with individual fixed effects.

The spread of so-called linked employer-employee data (LEED) has allowed
labor economists to develop also high-dimensional fixed effects models…
(Bruno Contini from Univ. Torino has been one of the very first ever
developing and analysing LEED since the 1980s)



AKM regression
𝑌!" = 𝛽# + 𝛽$𝑋!" + 𝑎! + 𝑓%(!,") + 𝑢!"

• 𝑓%(!,") is a firm fixed effect, which measures firms’ wage policy conditional on their employment
composition

• 𝑓%(!,") can have a causal interpretation if: E(𝑢!)| 𝑋!", 𝑎!, 𝑓%(!,")) = 0 ∀𝑗, 𝑡
• This implies that temporary shocks in wages can’t be a systematic reason driving worker mobility toward

high or low-wage firms…
• The name AKM comes from Abowd, Kramarz and Margolis (1999 Econometrica) first using this method
Card, Heining and Kline (2013) use a variance decomposition method (see do file of the lecture) based on 
the AKM regression. They show that higher dispersion in firm fixed effects can explain a relatively large 
portion of the growth in wage inequality occurred in West-Germany from the 1980s to the early 2000s.
It’s a very influential paper that has given rise to a large literature trying to estimate firm wage policies and to 
use them for several purposes (see papers provided in the lecture material)…



AKM-based variance decomposition

𝑣𝑎𝑟(𝑌!") = 𝑣𝑎𝑟(𝛽$𝑋!" + 𝑎!) + 𝑣𝑎𝑟(𝑓% !," ) + 2 ∗ 𝑐𝑜𝑣(𝛽𝑋!" + 𝑎!, 𝑓% !," ) + 𝑣𝑎𝑟(𝑢!")

This type of decomposition has been highly debated and attracted a lot of interest. If firms’ heterogeneity
explains a great proportion of inequalities and of their growth, non-competitive mechanisms and the 
underlying models of the labor market could be more credible than competitive ones.

The academic debate around this decomposition is highly technical, as there are some known sources of bias
in this decomposition…
• The measurement error of 𝑓%(!,") is negatively correlated with the measurement error of 𝑎!. This induces an 

underestimation of cov(𝑓%(!,"), 𝑎!). The problem is particularly relevant whenever the mobility of workers
across firms is low, which increases the measurement error of 𝑓%(!,")

• The recent literature has developed methods for correcting the bias in the estimates of var(𝑓%(!,")) and 
cov(𝑓%(!,"), 𝑎!). See in particular the papers by Bonhomme et al 2023 and Kline et al. 2020.


