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Problems With Instrumental Variables Estimation 
When the Correlation Between the Instruments and 

the Endogenous Explanatory Variable Is Weak 
John BOUND, David A. JAEGER, and Regina M. BAKER* 

We draw attention to two problems associated with the use of instrumental variables (IV), the importance of which for empirical 
work has not been fully appreciated. First, the use of instruments that explain little of the variation in the endogenous explanatory 
variables can lead to large inconsistencies in the IV estimates even if only a weak relationship exists between the instruments and 
the error in the structural equation. Second, in finite samples, IV estimates are biased in the same direction as ordinary least squares 
(OLS) estimates. The magnitude of the bias of IV estimates approaches that of OLS estimates as the R2 between the instruments 
and the endogenous explanatory variable approaches 0. To illustrate these problems, we reexamine the results of a recent paper by 
Angrist and Krueger, who used large samples from the U.S. Census to estimate wage equations in which quarter of birth is used as 
an instrument for educational attainment. We find evidence that, despite huge sample sizes, their IV estimates may suffer from finite- 
sample bias and may be inconsistent as well. These findings suggest that valid instruments may be more difficult to find than previously 
imagined. They also indicate that the use of large data sets does not necessarily insulate researchers from quantitatively important 
finite-sample biases. We suggest that the partial R2 and the F statistic of the identifying instruments in the first-stage estimation are 
useful indicators of the quality of the IV estimates and should be routinely reported. 
KEY WORDS: Compulsory attendance; Finite-sample bias; Inconsistency; Weak instrument. 

1. INTRODUCTION 

Empirical researchers often wish to make causal inferences 
about the effect of one variable on another. Doing so in 
nonexperimental settings is frequently difficult, because some 
of the explanatory variables are endogenous; that is, they are 
influenced by some of the same forces that influence the 
outcome under study. For example, economists examining 
the effect of education on earnings have long been concerned 
about the endogeneity of education. It seems quite plausible 
that the same unobserved factors might influence both in- 
dividuals' educational attainment and their earnings (.see, 
for example, Griliches 1977). "Ability" is often cited as one 
factor possibly correlated with earnings (those with higher 
ability earn more) and education (those with higher ability 
obtain more education). 

When explanatory variables are endogenous, ordinary least 
squares (OLS) gives biased and inconsistent estimates of the 
causal effect of an explanatory variable on an outcome. A 
common strategy for dealing with this endogeneity is to use 
instrumental variables (IV) estimation, using as "instru- 
ments" variables thought to have no direct association with 
the outcome. The exogenous instruments allow the re- 
searcher to partition the variance of the endogenous explan- 
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atory variable into exogenous and endogenous components. 
The exogenous component is then used in estimation. More 
specifically, the IV estimator uses one or more instrjuments 
to predict the value of the potentially endogenous regressor. 
The predicted values are then used as a regressor in the orig- 
inal model. Under the assumptions that the instruments are 
correlated with the endogenous explanatory variable but have 
no direct association with the outcome under study, the IV 
estimates of the effect of the endogenous variable are con- 
sistent. Bowden and Turkington ( 1984) and Angrist, Imbens, 
and Rubin (forthcoming) have provided useful introductions 
to IV estimation. 

When searching for plausible instruments for a potentially 
endogenous explanatory variable, it is common to find that 
the candidates are only weakly correlated with the endoge- 
nous variable in question. It is well recognized that using 
such variables as instruments is likely to produce estimates 
with large standard errors. In this article we draw attention 
to two other problems associated with the use of such in- 
struments. First, if the instruments are only weakly correlated 
with the endogenous explanatory variable, then even a weak 
correlation between the instruments and the error in the 
original equation can lead to a large inconsistency in IV 
estimates. Second, in finite samples, IV estimates are biased 
in the same direction as OLS estimates, with the magnitude 
of the bias approaching that of OLS as the R2 between the 
instruments and the endogenous explanatory variable ap- 
proaching 0. Though these results are known, their general 
importance for empirical work has not been fully appreciated. 

To illustrate these issues, we reexamine the results of a 
provocative paper by Angrist and Krueger ( 1991; henceforth 
denoted by AK-9 1 ). This paper used the large samples avail- 
able in the U.S. Census to estimate wage equations where 
quarter of birth is used as an instrument for educational 
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attainment. Although quarter of birth is only weakly related 
to educational attainment-the R2 in the regression of ed- 
ucational attainment on quarter of birth ranged between 
.0001 and .0002 in their samples-the authors obtained rea- 
sonable standard errors on their estimates of the effect of 
education on weekly earnings, due to the large samples they 
used. 

We present evidence suggesting that a weak correlation 
between quarter of birth and wages (independent of the effect 
of quarter of birth on education) exists and is sufficiently 
large to have quantitatively significant effects on AK-9 I's 
estimates. We also present results that indicate that the finite- 
sample bias may be quantitatively significant for some of 
the estimates that AK-91 reported. Together these results 
suggest that the "natural experiment" afforded by the inter- 
action between compulsory school attendance laws and 
quarter of birth does not give much usable information re- 
garding the causal effect of education on earnings. 

Our results illustrate the general significance of these issues. 
In particular, they suggest that it may be even harder than 
many have thought to find legitimate instruments for po- 
tentially endogenous variables. Although researchers may 
believe, a priori, that the variation in an instrument is largely 
unrelated to the process under study, this is not sufficient to 
imply that IV estimates will be less biased than those esti- 
mates produced using OLS. In addition, these results indicate 
that even researchers working with very large data sets need 
to be more concerned about the finite-sample properties of 
IV estimators. 

2. POTENTIAL PROBLEMS USING AN INSTRUMENT 
THAT IS WEAKLY CORRELATED WITH THE 
ENDOGENOUS EXPLANATORY VARIABLE 

We are interested in estimating A, the causal effect of x 
on y in Equation (1) from the following system (in which, 
for simplicity, we assume that all random variables have 
mean 0): 

y=Ox+c (1) 

x = ZIl + v (2) 

where x, c, and v are N X 1 vectors of independent realiza- 
tions of the random variables x, c, and v, respectively, y is 
an N X 1 vector, Z is an N X K matrix in which the rows 
are independent realizations of the vector z, composed of 
random variables z, ... ., Zk, I is a K X 1 vector of constants, 
and A is a scalar constant. Note that ( 1 ) differs from the 
formulation familiar to statisticians in that we do not assume 
that x is uncorrelated with the error term c, and therefore 
Ox may not be the conditional mean of y given x. We assume 
E(v I z) = 0. The IV estimator of A is 

fiv = (x'Pzx) x PZy, (3) 

where Pz = Z(Z'Z)-1Z', the projection matrix for Z. This 
is numerically equivalent to estimating (1) and (2) by two- 
stage least squares, where the first stage [equation (2)] is 
estimated by OLS and the predicted values from this esti- 
mation, x = ZIl, are used in place of x in the second-stage 
estimation of Equation ( 1) by OLS. Expanding ( 1) and (2 ) 

to include common exogenous variables would complicate 
the notation but would not otherwise change the results. 

It is straightforward to show that 

plim FOoir = A X2 (4) 
a-x 

and 

plim Oiv = A + (y2 (5) 

where air is the covariance between i andj, a j is the variance 
of i, and x represents the (population) projection of x 
onto z. 

Equation (4) indicates that ?x must be nonzero and x 
must be uncorrelated with c for ,%is to be a consistent esti- 
mator for A. Similarly, Equation (5) makes clear that ?x 
must be nonzero (i.e. that there must be an association be- 
tween x and z) and that z (and therefore x) must be uncor- 
related with c for fiv to be a consistent estimator of A. That 
is, fiv is consistent only if there is no direct association be- 
tween z and y. 

2.1 Inconsistency 

Equations (4) and (5) imply that the inconsistency of IV 
relative to OLS is 

plim AV - ?x e/ ( e 
plim &OS - Rx,z v 

where R 2z is the population R2 from the regression of x on 
z. When Equations (1) and (2) include common exogenous 
variables, the relevant parameter is the partial R2, the pop- 
ulation R2 from the regression of x on z once the common 
exogenous variables have been partialled out of both x 
and z. 

When K = 1, Equation (6) can be rewritten as 

plim iV - Pz,e/Px,e (7) 
plim $01S -f Px,z 

where Pi,j is the correlation between i and j. It is clear from 
Equation (7) that a weak correlation between the potentially 
endogenous variable, x, and the instrument, z1, will exac- 
erbate any problems associated with a correlation between 
the instrument and the error, c. If the correlation between 
the instrument and the endogenous explanatory variable is 
weak, then even a small correlation between the instrument 
and the error can produce a larger inconsistency in the IV 
estimate of A than in the OLS estimate. 

It is instructive to examine the special case where K = 1 
and z is dichotomous, partitioning the sample into two dis- 
tinct subpopulations. Let 1, i 2, xl, and x2 represent the 
subpopulation means of y and x, and define A\y - 

and &A k 2- . The IV estimator of A can then be written 
as 

Fiv= l'\X-' ~~(8) 

which is the Wald estimator of 13 ( Durbin 1954; Wald 1940) . 
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It is easy to see the possible inconsistency of the Wald 
estimator. If we take the difference across the two groups of 
z then Equation (1) becomes 

- = 0Ax+lk , (9) 

where A-c - 1. Dividing by AJu and taking the proba- 
bility limit gives 

plim ?-c 
plimfliv =+ - (10) 

plim /x 

i3 will be inconsistent if plim A-c * 0. The magnitude of the 
inconsistency will depend on the extent to which PI and -Y2 
differ for reasons unrelated to differences between xl and x-2 
(i.e., plim lzc * 0) and on the magnitude of plim AM~. Even 
very small direct effects of z on y will matter if plim &A7 is 
small. 

Although these results are not new (see Angrist, Imbens, 
and Rubin 1993; Bartels 1991, and Shea 1993 for recent 
discussions that mirror our own), their importance has been 
largely ignored by empirical researchers. 

2.2 Finite-Sample Bias 

We now assume that E(e I z) = 0, implying that the in- 
struments z are legitimate and that Av is a consistent esti- 
mator of A. In finite samples, however, oiv is biased in the 
direction of the expectation of the OLS estimator of 3. The 
magnitude of this bias depends on both the sample size (as 
the sample size increases, the bias is reduced) and the mul- 
tiple correlation between the instruments and the endogenous 
explanatory variable (as R 2 increases, the bias of oiv de- 
creases). The finite-sample bias arises because we do not 
know the first-stage coefficients, II, but instead must use 
estimates. Intuitively, this implies a certain amount of 
overfitting of the first-stage equation, leading to a bias in the 
direction of OLS. Consider the special case where the true 
value of each element of II is zero; that is, the instruments, 
z, are completely unrelated to the endogenous explanatory 
variable, x. But in any finite sample, the estimates of the 
elements of II will not be exactly equal to zero. The decom- 
position of x into components x and vi (where v - x-x) is 
arbitrary in this case. It thus seems quite natural that in this 
case, the expectation of Av would equal the expectation of 
0B1, The sampling variability of the two estimators will not 
be the same, of course. Interesting and intuitive discussions 
of the finite-sample properties of the IV estimator for the 
special case of exact identification and one stochastic dis- 
turbance have been presented by Nelson and Startz 
(1990a,b). 

Results on the magnitude of the finite-sample bias of IV 
estimates extend back to the work of R. L. Basmann. Under 
the assumption of joint normality, Richardson (1968) and 
Sawa ( 1969) independently derived expressions for the exact 
finite-sample distribution of the IV estimator in the case of 
only one endogenous explanatory variable but multiple in- 
struments. In particular, Sawa showed that the finite-sample 
bias of IV is in the same direction as the OLS bias and, in 
the limit as R2, approaches 0, is of the same magnitude as 
the OLS bias. 

Alternatively, it is possible to derive approximations to 
the finite-sample bias of the IV estimator without assuming 
normality using power series approximation methods. Buse 
(1992), building on earlier work by Nagar (1959), derived 
an expression for the approximate bias of fl1 in samples of 
size N, 

l'v (K- 2) (11) 

where K is the number of instruments; when Equations (1) 
and (2) include common exogenous variables, K is the num- 
ber of excluded instruments. A little rearranging gives the 
approximate bias as 

u2,v 
a v (K-2). (12) 

Note that av/ a v is approximately equal to the asymptotic 
bias of FO1, when z explains little of the variation of x. Define 
Ir2, the concentration parameter (Basmann 1963), as 2 

(ll'ZZII)/ aov. Equation ( 12) implies that for K > 2, the 
bias of the IV estimator of A relative to OLS is approximately 
inversely proportional to r2/K. This is the population analog 
to the F statistic on the instruments, Z, in the OLS estimation 
of Equation (2). When Equations (1) and (2) include com- 
mon exogenous variables, the relevant statistic is analogous 
to the F statistic on the excluded instruments. It should be 
noted that the F statistic estimated from any particular (fi- 
nite) sample will tend to overestimate r2/K for the same 
reason that the sample R2 is an upward-biased estimate of 
the population R2. Even so, Equation ( 12) suggests that ex- 
amining the F statistic on the excluded instruments in the 
first-stage regression of IV is useful in gauging the finite- 
sample bias of IV relative to OLS. 

It is possible to call into question the validity of using 
power series approximation methods to study the finite- 
sample properties of IV. At issue is the potential importance 
of the higher-order terms in the expansion. Under the as- 
sumption of normality, however, the exact distribution of 
the IV estimator can be derived. Drawing on Sawa's ( 1969) 
work, we derive the relative bias of the IV estimator using 
this assumption in the Appendix. When K = 1 (i.e., the 
system is just identified), the expectation of ,3jv does not 
exist. When K > 1, it again turns out to be true that mag- 
nitude of the bias depends on the parameter r 2/K. It is worth 
noting that unlike the results based on power series methods, 
the exact finite-sample results do not show a knife edge at 
K = 2. For moderately large K's and small values of r 2/K, 
the power series methods show somewhat larger biases than 
the results based on the assumption of normality. The two 
methods show relative biases of similar magnitude for mod- 
erately large K's and values of r 2/K larger than 2. Details 
can be found in the Appendix. 

In a recent paper, Staiger and Stock ( 1994) took a different 
approach to analyzing the finite-sample properties of IV es- 
timates. They developed an asymptotic distribution theory 
that does not rely on approximation or on the assumption 
of normality for IV estimates with weak instruments. Their 
approach holds the first-stage coefficiefits, II, in an -/ 
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neighborhood of zero as the sample size increases. In this 
context, they showed that F - 1 is an asymptotically unbiased 
estimator of X 2/K and that 1 /(1 + 9 /K) approximates the 
magnitude of the finite-sample bias of IV relative to OLS. 
This implies that 1 /F is an approximate estimate of the finite- 
sample bias of Fiv relative to /3ols. 

All three approaches suggest that the bias of IV relative 
to OLS is a function of r 2/K. If the relationship between 
the instruments and the endogenous explanatory variable is 
weak enough, even enormous samples do not eliminate the 
possibility of quantitatively important finite-sample biases. 
Each approach suggests that the first-stage F statistic contains 
valuable information about the magnitude of the finite- 
sample bias and that F statistics close to 1 should be cause 
for concern. 

3. A REEXAMINATION OF ANGRIST AND 
KRUEGER'S RESULTS 

3.1 Inconsistency 

AK-9 1 used quarter of birth as an instrument for educa- 
tional attainment in wage equations. In a subsequent article 
(Angrist and Krueger 1992, henceforth denoted by AK-92), 
they used quarter of birth as an instrument for age at school 
entry in educational attainment equations. For quarter of 
birth to be a legitimate instrument in the first case, its effect 
on educational attainment must be the only reason for its 
association with earnings. Similarly, for quarter of birth to 
be a legitimate instrument in the second case, the only reason 
for its association with educational attainment must be its 
effect on age at school entry. 

AK-91 and AK-92 documented significant associations 
between quarter of birth and age at school entry, educational 
attainment, and earnings for cohorts of men born during 
the 1930s and 1940s. Individuals born during the first quarter 
of the year start school later, have lower educational attain- 
ment, and earn less than those born during the rest of the 
year. 

Angrist and Krueger argued that compulsory school at- 
tendance laws account for these associations. The typical 
law requires a student to start first grade in the fall of the 
calendar year in which he or she turns age 6 and to continue 
attending school until he or she turns 16. Thus an individual 
born in the early months of the year will usually enter first 
grade when he or she is close to age 7 and will reach age 16 
in the middle of tenth grade. An individual born in the third 
or fourth quarter will typically start school either just before 
or just after turning age 6 and will finish tenth grade before 
reaching age 16. 

AK-9 1 and AK-92 presented several tabulations to support 
their claim that compulsory attendance laws are part of the 
mechanism generating a relationship between quarter of birth 
and educational attainment. First, the relationship between 
quarter of birth and educational attainment is weaker for 
more recent cohorts that would have been less likely to have 
been constrained by the law. Second, the relationship be- 
tween quarter of birth and education is weaker for better- 
educated individuals. Third, the relationship between quarter 
of birth and educational attainment varies across states, de- 

pending on when each state requires children to start school. 
Each of these patterns is consistent with the assertion that 
compulsory school attendance laws are responsible for the 
association between quarter of birth and educational attain- 
ment. 

Given the evidence that Angrist and Krueger presented, 
we are left with little doubt that compulsory attendance laws 
are working to induce a correlation between quarter of birth 
and educational attainment. We question, however, whether 
these laws are the only reason for this correlation, and, there- 
fore, whether quarter of birth is a legitimate instrument in 
estimating either wage or educational attainment equations. 
The relationship between quarter of birth and age at school 
entry must be the only reason for the association between 
quarter of birth and educational attainment for quarter of 
birth to be a legitimate instrument for age at school entry in 
educational attainment equations. Similarly, there cannot 
be any direct association between quarter of birth and wages 
for quarter of birth to be a legitimate instrument for edu- 
cational attainment in wage equations. Because the associ- 
ation between quarter of birth and education is very weak, 
Equation (6) indicates that even a small direct association 
between quarter of birth and wages is likely to badly bias the 
estimated coefficient on education in wage equations. 

Although we know of no indisputable evidence on the 
direct effect of quarter of birth on education or earnings, it 
seems quite plausible that such effects exist. First, quarter of 
birth may affect a student's performance in school. There is 
some evidence that quarter of birth is related to school at- 
tendance rates (Carroll 1992), the likelihood that a student 
will be assessed as having behavioral difficulties (Mortimore, 
Sammons, Stoll, Lewis, and Ecob 1988), the likelihood that 
a student will be referred for mental health services (Tar- 
nowski, Anderson, Drabman, and Kelly 1990), and perfor- 
mance in reading, writing, and arithmetic (Mortimore et al. 
1988; Williams, Davies, Evans, and Ferguson 1970 for a 
summary of earlier literature). Second, there are identifiable 
differences in the physical and mental health of individuals 
born at different times of the year. There is substantial evi- 
dence that individuals born early in the year are more likely 
to suffer from schizophrenia (see, for example, O'Callaghan 
et al. 1991, Sham et al. 1992, and Watson, Kucala, Tilleskjor, 
and Jacobs 1984). There is also evidence of variation by 
quarter of birth in the incidence of mental retardation 
(Knoblock and Pasamanick 1958), autism (Gillberg 1990), 
dyslexia (Livingston, Adam, and Bracha 1993), multiple 
sclerosis (Templer et al. 1991), and manic depression (Hare 
1975), as well as somewhat mixed evidence regarding dif- 
ferences in IQ among children born at different times of the 
year (Whorton and Karnes 1981). Third, there are clear 
regional patterns in birth seasonality (Lam and Miron 1991). 
Finally, there is some evidence suggesting that those in fam- 
ilies with high incomes (Kestenbaum 1987) are less likely 
to be born in the winter months. Although the evidence for 
some of these associations is weaker than for others, and not 
all of the effects are in the same direction, the existing lit- 
erature casts doubt on the notion of negligible direct asso- 
ciations between quarter of birth and either educational at- 
tainment or earnings. 
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Are any of these seasonal effects large enough to cause 
large biases on the coefficient of interest in the estimation of 
either educational attainment or wage equations? As noted 
earlier, the family income of those born early in the year 
tends to be lower than the family income of those born later 
in the year. Our calculations using the 1980 U.S. Census 
show that the difference in mean log per capita family income 
between those born in the first quarter of the year and those 
born in the second through fourth quarters of the year is 
-.0238 among children age 0 to 3 years. Ideally, we would 
like an estimate of this difference for the samples of men 
born in the 1930s and 1940s that Angrist and Krueger an- 
alyzed. But because seasonal variation in fertility has declined 
over the last 50 years (Lam and Miron 1991; Seiver 1985), 
our estimate of differences in family income by children's 
season of birth is likely to underrepresent the difference for 
men born in that period. Using data from the Panel Study 
of Income Dynamics (unreported results using the same 
sample as in Solon 1992) found that in a regression of chil- 
dren's educational attainment on the log of fathers' earnings, 
a 1 % rise in fathers' earnings was associated with a .014-year 
rise in childrens' educational attainment. The difference in 
family income between those born in the first quarter and 
those born in subsequent quarters thus can explain approx- 
imately a .03 grade difference in educational attainment be- 
tween these groups. AK-91 reported that for men born be- 
tween 1930 and 1939, those born in the first quarter had on 
average .1 year less of educational attainment than those 
born in the second through fourth quarters. Thus differences 
in family income across those born in different quarters 
would seem to be capable of explaining about one-third of 
the association between quarter of birth and educational at- 
tainment. 

In terms of wages, the weak association between educa- 
tional attainment and quarter of birth indicates that even if 
other seasonal effects are weak, they could still have large 
effects on the estimated coefficients. AK-91 actually pre- 
sented results suggesting the effects of quarter of birth on 
wages independent of the effect of quarter of birth on edu- 
cational attainment. It reported IV estimates that controlled 
and did not control for race, urban status, marital status, 
and region of residence. In each case, including these vari- 
ables as controls reduces the IV estimates substantially more 
than their inclusion reduces the OLS estimates. For example, 
in AK-91 when these controls were added to the OLS results 
reported in column (3) of Table V, the coefficient on edu- 
cation dropped 11%, from .071 to .063. In comparison, when 
the same controls were added to the IV estimates reported 
in column 4, the coefficient on education dropped 21 %, from 
.076 to .060. This result implies an association between 
quarter of birth and the control variables. For example, blacks 
are .7% more likely than whites to have been born during 
the winter quarter. Because blacks on average have lower 
educational attainment and earnings than whites, race par- 
tially accounts for the lower educational attainment and 
earnings among individuals born during the winter quarter. 
In the samples used in AK-9 1, the associations between 
quarter of birth and other covariates (race, marital status, 
and location of residence ) are all quite small. But even these 

small differences in the seasonal birth pattern have substantial 
effects on the estimated coefficient on education. 

The earlier calculation using differences in per capita fam- 
ily income across quarter of birth suggests that omitted factors 
could easily account for all of the small association between 
earnings and quarter of birth. As noted previously, we found 
that the difference in mean log per capita family income 
among children age 0 to 3 years between those born in the 
first quarter of the year and those born in the second through 
fourth quarters of the year is -.0238. Solon (1992) and Zim- 
merman (1992) both found an intergenerational correlation 
in long-run income of at least .4. Given their results, the 
differences in family incomes between those born in the first 
quarter and the rest of the year would lead us to expect that 
men born in the winter to earn about .95% lower wages than 
those born during the rest of the year. Data from the 1980 
U.S. Census show that among men born during the 1930s, 
those born during the first quarter earn 1.1% lower wages 
(AK-9 1). Thus differences in family income at time of birth 
would seem to account for virtually all of the association 
between quarter of birth and wages. 

3.2 Finite-Sample Bias 

Because quarter of birth and educational attainment are 
only very weakly correlated, AK-9 I's estimates may be sub- 
ject to finite-sample bias even with its enormous samples. 
To investigate this possibility, we reexamined these data 
drawn from the U.S. Census. AK-91 used three 10-year co- 
horts, emphasizing results for men born between 1930 and 
1939. We use this sample to illustrate our points. We were 
able to replicate exactly AK-91's samples and results using 
the information in its Appendix 1, and we refer the reader 
there for details regarding sample and variable creation. 

Table 1 presents estimates of the effects of education on 
the logarithm of men's weekly earnings. Columns (3) 
through (6) replicate AK-9 I's Table V, columns (5) through 
(8). Columns (3) and (5) present OLS estimates, and col- 
umns (4) and (6) present IV estimates, with quarter of birth 
and quarter of birth interacted with year of birth as the ex- 
cluded instruments. Columns (3) and (4) differ from col- 
umns (5) and (6) in the age controls used. Columns (3) and 
(4) use single year of birth dummies, whereas in columns 
(5) and (6) age and age squared, measured in quarter years, 
are added. In addition to these replications, in columns (1) 
and (2) we report results from a simpler specification than 
those used in AK-9 1. These models use only age and age 
squared as controls for age, and column (2) uses quarter of 
birth dummies without year-of-birth interactions as instru- 
ments. We report the coefficient and standard error on ed- 
ucation from each OLS and second-stage IV regression. In 
addition, we report the F statistic for the test of the joint 
statistical significance of the excluded instruments and the 
partial R2 of the excluded instruments from the first-stage 
regression of each IV specification. We also report Basmann's 
(1960) F test for overidentification for each IV specification. 

The F statistic on the excluded instruments decreases 
across the different IV specifications in Table 1. In the sim- 
plest specification that includes only three quarter-of-birth 
dummies as instruments, the F statistic suggests negligible 
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Table 1. Estimated Effect of Completed Years of Education on Men's Log Weekly Earnings 
(standard errors of coefficients in parentheses) 

(1) (2) (3) (4) (5) (6) 
OLS IV OLS IV OLS IV 

Coefficient .063 .142 .063 .081 .063 .060 
(.000) (.033) (.000) (.016) (.000) (.029) 

F (excluded instruments) 13.486 4.747 1.613 
Partial R2 (excluded instruments, X100) .012 .043 .014 
F (overidentification) .932 .775 .725 

Age Control Variables 

Age, Age2 x x x x 
9 Year of birth dummies x x x x 

Excluded Instruments 

Quarter of birth x x x 
Quarter of birth x year of birth x x 
Number of excluded instruments 3 30 28 

NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men born 1930-1939. Sample size is 329,509. All specifications include 

Race (1 = black), SMSA (1 = central city), Married (1 = married, living with spouse), and 8 Regional dummies as control variables. F (first stage) and partial 

R2 are for the instruments in the first stage of IV estimation. F (overidentification) is that suggested by Basmann (1960). 

finite-sample bias. Because quarter of birth is related, by def- 
inition, to age measured in quarters within a single year of 
birth, and because age is an important determinant of earn- 
ings, we find the specification using within-year age controls 
[column (6) ] to be more sensible than the specification that 
does not [column (4) ]. The F statistic on the excluded in- 
struments in column (6) indicates that quantitatively im- 
portant finite-sample biases may affect the estimate. Com- 
paring the partial R2 in columns (2) and (6) shows that 
adding 25 instruments does not change the explanatory 
power of the excluded instruments by very much, explaining 
why the F statistic deteriorates so much between the two 
specifications. 

Compulsory attendance laws, and the degree to which 
these laws are enforced, vary by state. In AK-9 1 the authors 
used this cross-state variation to help identify the coefficient 
on education by including state of birth X quarter of birth 
interactions as instruments in some of their specifications. 
Besides improving the precision of the estimates, using vari- 
ation across state of birth should mitigate problems of mul- 
ticollinearity between age and quarter of birth. In Table 2 
we report replications of AK-9 I's Table VII, columns (5) 
through (8). These models use quarter of birth X state of 
birth interactions in addition to quarter of birth and quarter 
of birth X year of birth interactions as instruments for ed- 
ucational attainment. 

Including the state of birth X quarter of birth interactions 
reduces the standard errors on the IV results by more than 
a factor of two and stabilizes the point estimates considerably. 
The F statistics on the excluded instruments in the first stage 
of IV do not improve, however. These F statistics indicate 
that although including state of birth X quarter of birth in- 
teractions improves the precision arn I reduces the instability 
of the estimates, the possibility that small-sample bias may 
be a problem remains. 

To illustrate that second-stage results do not give us any 
indication of the existence of quantitatively important finite- 
sample biases, we reestimated Table 1, columns (4) and (6), 

and Table 2, columns (2) and (4), using randomly generated 
information in place of the actual quarter of birth, following 
a suggestion by Alan Krueger. The means of the estimated 
standard errors reported in the last row are quite close to the 
actual standard deviations of the 500 estimates for each 
model. Moreover, the distribution of the estimates appears 
to be quite symmetric. In these cases, therefore, the asymp- 
totic standard errors give reasonably accurate information 
on the sampling variability of the IV estimator. This is specific 
to these cases, however. Nelson and Startz (I 990a) showed, 
in the context of a different example, that asymptotic stan- 
dard errors can give very misleading information about the 
actual sampling distribution of the IV estimator when the 
correlation between the instrument and the endogenous 
variable is weak. 

Table 2. Estimated Effect of Completed Years of Education on 
Men's Log Weekly Earnings, Controlling for State of Birth 

(standard errors of coefficients in parentheses) 

(1) (2) (3) (4) 
OLS IV OLS IV 

Coefficient .063 .083 .063 .081 
(.000) (.009) (.000) (.01 1) 

F (excluded instruments) 2.428 1.869 
Partial R2 (excluded instruments, X100) .133 .101 
F (overidentification) .919 .917 

Age Control Variables 

Age, Age2 x x 
9 Year of birth dummies x x x x 

Excluded Instruments 

Quarter of birth x x 
Quarter of birth x year of birth x x 
Quarter of birth x state of birth x x 
Number of excluded instruments 180 178 

NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men bom 1930- 
1939. Sample size is 329,509. All specifications include Race (1 = black), SMSA (1 = central 
city), Maried (1 = maried, living with spouse), 8 Regional dummies, and 50 State of Birth dummies 
as control variables. F (first stage) and partial R2 are for the instruments in the first stage of IV 
estimation. F (overidentification) is that suggested by Basmann (1960). 
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It is striking that the second-stage results reported in Table 
3 look quite reasonable even with no information about edu- 
cational attainment in the simulated instruments. They give 
no indication that the instruments were randomly generated. 
As the analytic results in Section 2.2 would suggest, the mean 
of the estimated coefficients in each case is close to the com- 
parable OLS estimate. The estimated standard errors look en- 
couraging and are only somewhat larger than the ones reported 
for the comparable IV estimates reported in Tables 1 and 2 
where actual quarter of birth is used as the instrument. On the 
other hand, the F statistics on the excluded instruments in the 
first-stage regressions are always near their expected value of 
essentially 1 and do give a clear indication that the estimates 
of the second-stage coefficients suffer from finite-sample biases. 

We conclude that it is likely that some of the results re- 
ported in AK-9 1 are affected by quantitatively large finite- 
sample biases. Our results imply that if the correlation be- 
tween the instruments and the endogenous variable is small, 
then even the enormous sample sizes available in the U.S. 
Census do not guarantee that quantitatively important finite- 
sample biases will be eliminated from IV estimates. They 
also indicate that the common practice of adding interaction 
terms as excluded instruments may exacerbate the problem, 
even while reducing the standard error of the coefficient on 
the endogenous explanatory variable. 

4. CONCLUSION 
These results illustrate that the use of instruments that 

jointly explain little of the variation in the endogenous vari- 
able can do more harm than good. The example we chose 
to analyze is noteworthy, because Angrist and Krueger would 
have seemed to be on strong ground in choosing a valid 
instrument. They produced evidence supporting the notion 
that compulsory attendance laws induce a correlation be- 
tween quarter of birth and educational attainment. More- 
over, it seems implausible that there would be any very strong 
direct association between quarter of birth and wages. We 
have shown, however, that these conclusions are not suffi- 
cient to ensure that the use of quarter of birth as an instru- 
ment for educational attainment will reduce the magnitude 
of the inconsistency inherent in the use of an endogenous 
variable as a regressor. 

Having become acutely aware of the endogeneity of many 
of the variables whose impact we wish to study, we tend to 
believe that the use of plausible instruments will improve 
the validity of our inferences. Although standard errors may 
be large, we imagine that we have eliminated most of bias 
inherent in the OLS estimates. But Equation (6) indicates 
that this may not be true even with instruments that seem 
reasonably exogenous to the process under study. If a set of 
potential instruments is weakly correlated with the endog- 
enous explanatory variable (as is often the case), then even 
a small correlation between the potential instruments and 
the error can seriously bias estimates. 

We also show that working with large samples does not 
insulate us from quantitatively important finite-sample 
biases. Although we have no way of knowing to what extent 
this issue is empirically important for those working with 
such data, our results suggest that even those working with 

Table 3. Estimated Effect of Completed Years of Education on Men's 
Log Weekly Earnings, Using Simulated Quarter of Birth 

(500 replications) 

Table (column) 1 (4) 1 (6) 2 (2) 2 (4) 

Estimated Coefficient 

Mean .062 .061 .060 .060 

Standard deviation of mean .038 .039 .015 .015 

5th percentile -.001 -.002 .034 .035 
Median .061 .061 .060 .060 
95th percentile .119 .127 .083 .082 

Estimated Standard Error 

Mean .037 .039 .015 .015 

NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men born 1930- 
1939. Sample size is 329,509. 

large cross-sectional samples should be cautious about adding 
instruments to increase precision. 

Our results emphasize the importance of examining char- 
acteristics of the first-stage estimates. The standard errors re- 
ported in AK-9 1 appear reasonable, and overidentification tests 
give no indication that the authors' models are misspecified. 
But despite these observations, we have shown that there is 
good reason to doubt the validity of inferences they drew about 
the effect of educational attainment on earnings when quarter 
of birth is used as an instrument. More generally, our results 
suggest that the partial R2 and F statistic on the excluded in- 
struments in the first-stage regression are useful as rough guides 
to the quality of IV estimates. We suggest that both statistics 
be routinely reported when IV estimates are presented. 

APPENDIX: THE EXACT FINITE-SAMPLE BIAS OF IV 

IV estimates are biased in finite samples. As we have shown in 
the text, the magnitude of that bias can be approximated using 
power series expansion methods. It is also possible to derive the 
exact magnitude of the bias under the assumption of normality. In 
this appendix we expand on Sawa's ( 1969) work on the exact mag- 
nitude of the finite-sample bias of IV to show that the two methods 
yield comparable results. 

We are interested in estimating equation (A. 1 ) from the following 
system (in which, for simplicity, we assume that all random variables 
have mean 0): 

y Ox + e, (A.1) 

x =ZII + v, (A.2) 

where x, e, and v are N X 1 vectors of independent realizations of 
the random variables x, e, and v, respectively, y is an N X 1 vector, 
Z is an N X K matrix in which the rows are independent realizations 
of the vector z, composed of random variables z1, . . ., Zk, II is a 
K X 1 vector of constants, and ,B is a scalar constant. We assume 
that E(e I z) = 0 and E(v I z) = 0. In addition, because E(&i3) does 
not exist when K = 1, we assume that K > 1. 

Let the reduced form of equation (A. 1) be 

y = ZIIO + vO. (A.3) 

Define 

2r (A.4) 
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Table A. 1. Bias of IV Estimates Relative to OLS Estimates 

T2/K 

K .5 1.0 2.0 4.0 10.0 100.0 

2 .61 .37 .14 .02 .00 .00 
3 .62 .41 .21 .09 .03 .00 

10 .65 .47 .30 .17 .08 .01 
20 .66 .49 .32 .19 .08 .01 

100 .67 .50 .33 .20 .09 .01 
200 .67 .50 .33 .20 .09 .01 

NOTE: K is the number of excluded instruments and T2IK is the population analog to the F 
statistic for the joint statistical significance of the instruments in the first-stage regression. Entries 
are [1 - (ir2/K)IFI(1, (K + 2)/2; -T2/2)], which is the approximate bias of fi. relative to 4. when 
the R2 between the instruments and the endogenous explanatory variable is small. Details are 
contained in the text. 

and 

p 2 (A.5) 

Sawa showed that under the assumptions that v and Po are distributed 
as jointly normal, the OLS and IV biases can be written as 

E(3ols)- = -IP)[y 1 1FI( I, N+ ; - I 1 
(A.6) 

E(Oiv)-,B = (/3-P)[ KIF,( 1, _ 2 ] (A.7 

where 1F1 , is the confluent hypergeometric function. Note 
that r2/(N-1) I R 2 the population R2 from the regression of 
x on z, and that T21K is population analog to F statistic for the 
regression of x on z. For large values of N and small values of T2, 

1F1(l,(N+ 1)/2;-92/2) 1. For large Nand small R ,therefore, 
the OLS bias approaches j3-p and the relative bias of IV approaches 
the expression in square brackets in (A.7). 

Although the implication of Equations (A.6) and (A.7) is far 
from obvious, it is possible to approximate 1 F1 ( 1, y; N) for various 
values of oy and t. In Table A. 1 we present the magnitude of the 
bias of IV relative to OLS for various values of T 2/Kand K. Clearly, 
the bias of IV relative to OLS depends on the T2/K, the population 
analog to the F statistic on the excluded instruments. 

[Received June 1993. Revised June 1994.] 
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