
Sixth STATA lab

The Research Discontinuity Design (RDD) Method

Introduction

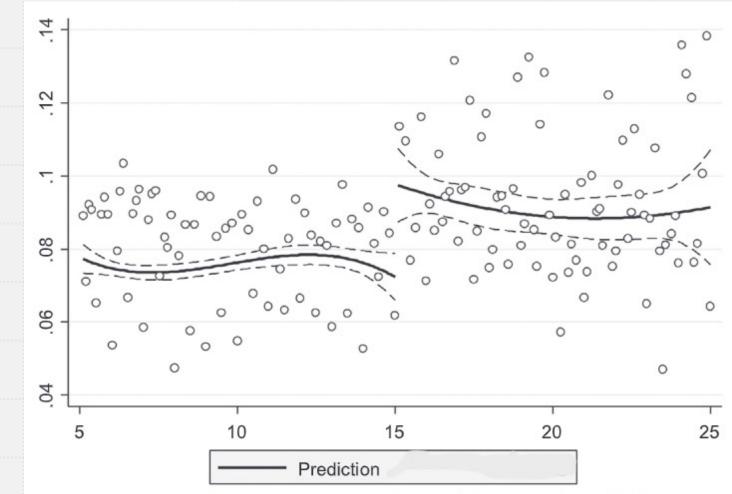
- The Research Discontinuity Design (RDD) method can be used for causal inference in a particular case...
- There is a policy, law, or particular intervention that is administered/enters into force based on the attainment of a threshold
- For example: all individuals with an ISEE-wealth score (which we denote by Z) below threshold \underline{z} receive a basic income. All those for whom $Z > \underline{z}$ do not qualify for income.
- Formally, in this case we can denote our treatment as.

$$T = \begin{cases} 1 & if \ Z \le \underline{z} \\ 0 & if \ Z > \underline{z} \end{cases}$$

In the RDD jargon we call the variable Z a *running variable*.

-Z can have an influence on our dependent variable of interest (Y). The basic assumption of this method is that, in the absence of intervention X, the relationship between Y and Z would be continuous around threshold <u>z</u>.

Intuition of the RDD estimator


- The presence of a threshold for access to the policy or a particular intervention creates the conditions for a "natural experiment."
- We expect those with ISEE-income score slightly above or slightly below \underline{z} to be similar. If we observe a discontinuity in Y at point \underline{z} , we can attribute this effect to intervention X
- There are plenty of concrete cases where this method can be applied. What is the running variable in each of these examples?
 - Scholarships whose access depends on income (income)
 - Minimum score in the undergraduate grade for access to certain professions (undergraduate grade)
 - Policies applied in only one of two neighboring regions (distance from regional boundary, this method is also called "Spatial RDD")
 - Application of Article 18 of the Workers' Statute only to enterprises with more than 15 employees (number of employees)
 - > Decontribution for newly hired young people who are under 30 years old (age)

An example: Hijzen et al. 2017

Hijzen et al (2017) study whether there are differences in the proportion of fixed-term contracts in firms above/below the 15employee threshold in Italy.

Above 15 employees, Article 18 of the Workers' Statute applies to all permanent contracts, resulting in greater restrictions on the ability to dismiss. If permanent contracts are more "expensive" in large firms, are fewer of them used?

The answer seems to be positive, can you tell why by looking at this graph?

Linear prediction based on parametric estimates with third-order polynomial in firm size.

Fig. 4. The impact of employment protection on the incidence of temporary employees.

Specifications of the RDD estimator

Formally, there are two methods for estimating the effect of intervention X using the RDD approach

-Based on the parametric method, the regression of interest is

 $Y = \alpha + \beta_1 X + \gamma_1 Z + \gamma_2 Z^2 + \dots + \gamma_k Z^k + e$

 $\gamma_1, \ldots, \gamma_k$: estimate of the (nonlinear) effect of Z on Y using a polynomial specification of degree k

 β_1 : estimate of the effect of intervention X. If statistically significant, it means that there is a discontinuity in outcome Y upon reaching eligibility threshold <u>z</u>

-Based on the nonparametric method, the regression of interest is

 $Y = \alpha + \beta_1 X + \gamma_1 Z + \gamma_2 Z X + e$

 γ_1 : estimate of the (linear) effect of Z on Y when X=0

 γ_2 : estimate of the (linear) effect of Z on Y when X=1

 β_1 : estimate of the effect of intervention X. If statistically significant, it means that there is a discontinuity in outcome Y upon reaching eligibility threshold <u>z</u>

It is also possible to extend the nonparametric approach to the polynomial case, for example, by including $\gamma_3 Z^2$ and $\gamma_4 Z^2 X \dots$

Assumptions of the RDD estimator

Formally, two basic assumptions must be met:

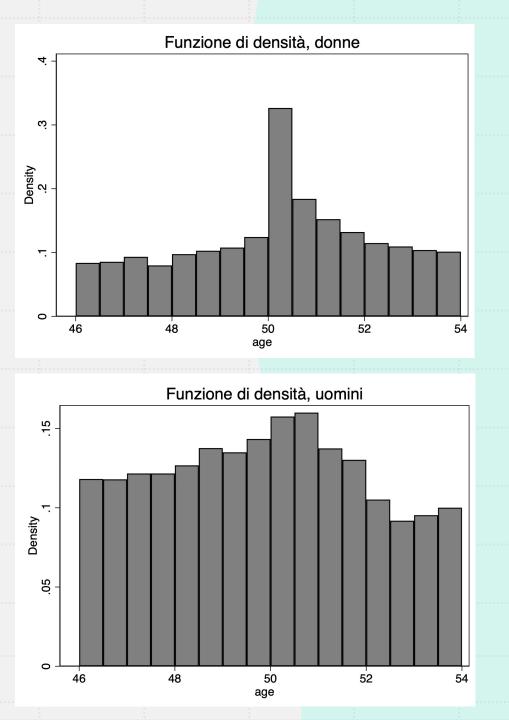
-The conditional function of Y with respect to Z is continuous around the eligibility threshold \underline{z}

-Individuals cannot manipulate Z, that is, they cannot decide to acquire more/less Z to self-select in/out of intervention X

There are some implications arising from these hypotheses that can be tested empirically:

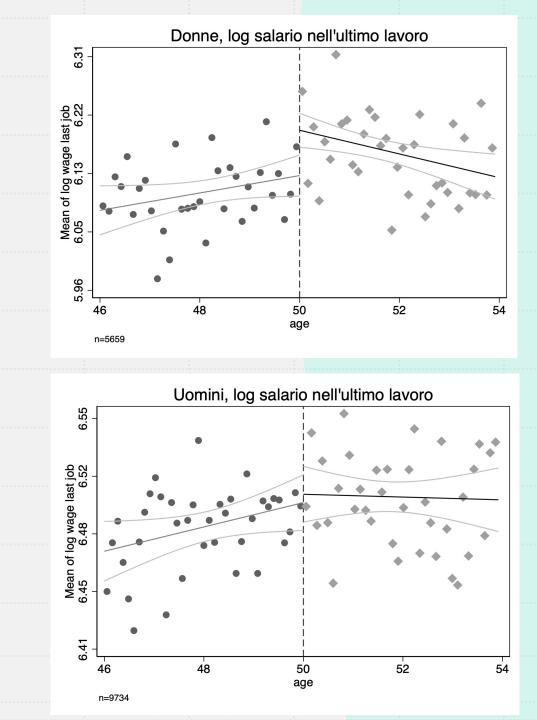
-You can test whether the distribution of the variable Z is continuous around the <u>z</u>-threshold (ideally it should be, otherwise you may suspect manipulation if there is an excess mass of observations and/or a deficit of observations just above/below the threshold)

-You can test whether the conditional distribution with respect to Z of the variables that are predetermined at intervention X is continuous around threshold \underline{z} (ideally it should be, otherwise there are significant differences in the composition of the sample above/below the threshold)


Application: Lalive (2008) on unemployment duration

- The study by Lalive (2008) that we replicate in STATA examines a reform that extended the duration of unemployment benefits in Austria from 30 weeks to 229 weeks.
- However, this extension of duration affected only people over the age of 50 and some Austrian regions. Lalive (2008) exploits two types of RDDs (called sharp RDDs-terminology we will explain shortly):
- Discontinuity in the duration of unemployment benefits at age 50 (age is the running variable) -> we replicate with STATA
- Discontinuity by region of residence (distance from regional boundary is the running variable) -> we do not replicate

The main research question is whether benefiting from an unemployment benefit that potentially lasts longer (X=1) has an effect on the length of the unemployment period (Y).


Lalive (2008): test on threshold manipulation

- For men, a continuous age distribution is observed around age 50.
- For women, an excess mass is observed above age 50.
- In fact, for women, the reform is equivalent to a preretirement: with a duration of 229 weeks of unemployment benefits, they can reach the age to qualify for the old-age pension without having to return to work.
- As a result, many more women enter unemployment upon reaching age 50: it is as if they are retiring, and they are therefore likely to be statistically different from women who enter unemployment before age 50.

Lalive (2008): test on the continuity of predetermined variables

- For men, no significant differences are observed in the last wage earned before unemployment above/below age 50
- For women, differences in this pre-determined variable above/below 50 are visible.

Lalive (2008): Effect of maximum duration of unemplotment benefit on duration of unemployment

Lalive's (2008) study shows (for men) a positive effect of maximum benefit duration on unemployment duration (increase of 11-14 weeks depending on estimates)

An important issue is the choice of bandwith (how many observations to include in the regression based on their distance from the <u>z</u>-threshold?) There are some methods for an endogenous (i.e., data-driven) choice of bandiwth -> see rdrobust command

	<pre>. rdrobust unemployment_duration x if female == 0, c(0) p(2)</pre>							. reg unemployment duration d x i.d#c.x if female == 0, robust . reg unemployment_duration d x x2-x5 if female == 0, robust															
Mass points detected in the running variable.																							
								Linear regression					of obs =	=	G Linear regress	sion	Number	ofobs =		9,734			
Sharp RD estimates using local polynomial regression.											F(3, 9730) =		5		F(6, 9727) =			26.27					
	Cutoff c = 0	left of c	Right of a	-	Numb	er of ob	s =	9734					Prob >		= 0	ĺ.				Prob >			0.0000
_			Right of C	-	BW t		=	mserd					R-squar		= 0					R-squar			0.0160
	Number of obs	4975	4759)	Kern	el	= Tr	iangular					Root MS		= 5					Root MS			58.009
E	Eff. Number of obs	2131	2452	2	VCE	method	=	NN					NOUL HS		- ,					NOUL HS			50.009
	Order est. (p)	2	2	2																			
	Order bias (q)	3	3	3																			
	BW est. (h)	1.655									Robust							Robust					
	BW bias (b) rho (h/b)	2.127 0.778							unemployme~n	Coefficient	std. err.	t	P> t	[95% con1	. inte	runemployme~n	Coefficient	std. err.	t	P> t	[95% conf	. int	erval]
	Unique obs	48	48																				
									d	14.79848	2.234337	6.62	0.000	10.41872	19.	b 1	11.78048	3.738889	3.15	0.002	4.451477	19	.10948
c	Outcome: unemployment_duration. Running variable: x.						х	.2293574	.4480373	0.51	0.609	6488888	1.1	.e x	2.75757	2.339296	1.18	0.239	-1.827938	7.	343077		
-																x2	1443008	.4385676	-0.33	0.742	-1.003984	.7	153828
	Method	Coef.	Std. Err.	Z	P> z	[95% C	onf. I	nterval]	d#c.x							x3	5916064	.3782731	-1.56	0.118	-1.3331	.1	498874
	Conventional	12 625	5.8464	2.3304	0.020	2.1658	•	25 0025	1	6028858	.981324	-0.61	0.539	-2.526485	1.3	2 x4	.0034525	.031997	0.11	0.914	0592684	.0	661733
	Conventional Robust	13.625		2.3304	0.020	.87619	-	25.0835 27.3157								x5	.0309217	.0185955	1.66		0055294		673729
_	Robust	_		2.0033	0.057	.0/019	•	27.5157	_cons	14.97024	1.08089	13.85	0.000	12.85147	17.		16.48416	1.915503	8.61	0.000	12.72937		.23894
Estimates adjusted for mass points in the running variable.															10.40410	1.919903	0.01	0.000	12.72937	20	.23034		

Lalive (2008): Fuzzy RDD

- If we want to study what is the effect of unemployment duration on the level of wages earned in the first job upon exiting unemployment, we can use the discontinuity at age 50 as an instrumental variable.
- The reform, by increasing the maximum duration of the benefit, has an influence on the duration of unemployment -> it is a <u>relevant instrument (first-stage</u>)
- If having a subsidy with a longer maximum duration influences the post-unemployment wage only because it influences the duration of unemployment, the instrument will also be <u>valid</u> (exclusion restriction)
- This estimation approach is called **fuzzy RDD**, different than the sharp RDD we saw earlier. Discontinuity in this case is used to estimate a relationship between the variable influenced by reform X (our variable Y) and a third variable (W).
- Structural equation: W = a + bY + cZ
- First-stage: Y = a + bX + cZ
- Reduced form: W = a + bX + cZ

The IV estimate of the fuzzy RDD effect is given by b_iv = b_reduced / b_first

Lalive (2008): Does a longer unemployment duration help finding a better job?

- Based on fuzzy RDD estimates, an extra week spent in job search has a positive effect of 2.5 percent on the wage you earn once you find a new job.
- Under the F-test, the instrument is relevant. Do you consider the exclusion restriction credible in this setting?

. ivreg2 rwage (unemployment_duration = d) x 1.d#c.x if female == 0 & abs(x)<2, robust</p>

IV (2SLS) estimation

Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity

			Number of obs			
			F(3, 5378)	=	18.72	
			Prob > F	=	0.0000	
Total (centered) SS	=	698.6729936	Centered R2	=	-18.3336	
Total (uncentered) SS	=	218082.9663	Uncentered R2	=	0.9381	
Residual SS	=	13507.86405	Root MSE	=	1.584	

rwage	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
nemployment_duration x	.0249508 .0093276	.0062968 .0389873	3.96 0.24	0.000 0.811	.0126093 067086	.0372923 .0857413
d#c.x 1	1009598	.0870967	-1.16	0.246	2716662	.0697467
_cons	5.835988	.1192393	48.94	0.000	5.602283	6.069692

 Underidentification test (Kleibergen-Paap rk LM statistic):
 16.468

 Chi-sq(1) P-val =
 0.0000

 Weak identification test (Cragg-Donald Wald F statistic):
 14.752

 (Kleibergen-Paap rk Wald F statistic):
 16.569

Stock-Yogo weak ID test critical values: 10% maximal IV size 15% maximal IV size 20% maximal IV size 25% maximal IV size 5.53

Source: Stock-Yogo (2005). Reproduced by permission.

NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): 0.000 (equation exactly identified)

Instrumented: unemployment_duration Included instruments: x 1.d#c.x Excluded instruments: d