5.1 Sezioni locali e globali di varietà fibrate

Data una varietà fibrata $\pi: Y \longrightarrow M$ diciamo che una funzione $\sigma: M \longrightarrow Y$ è una sezione globale della varietà fibrata se $\pi \circ \sigma = \mathrm{id}_M$. Ci sono varietà fibrate, di cui vedremo esempi più avanti, che non ammettono sezioni globali continue.

È sempre possibile definire sezioni di classe \mathcal{C}^{∞} su opportuni aperti $U\subseteq M$. Ad esempio se consideriamo un sistema di coordinate fibrate $(V,\psi)=(V,x^{\alpha},y^{i})$ definite in un intorno aperto V di un punto $p\in Y$ che si proietta su un sistema di coordinate $(U,\varphi)=(U,x^{\alpha})$ attorno al punto $q=\pi(p)\in M$. Una sezione $\sigma:U\longrightarrow V$ è una funzione tale che

$$\psi \circ \sigma \circ \varphi^{-1} : (x^{\alpha}) \longmapsto (x^{\alpha}, \sigma^{i}(x^{\beta})). \tag{1}$$

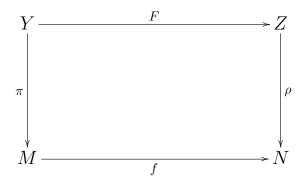
La sezione σ è di classe \mathcal{C}^k , o di classe \mathcal{C}^{∞} , se e solo se le funzioni σ^i sono di classe \mathcal{C}^k , o di classe \mathcal{C}^{∞} . Le sezioni di questo tipo sono dette sezioni locali di Y definite sull'aperto U.

Se non utilizziamo sistemi di coordinate fibrate le formule che ci dicono che σ è una sezione sono più complicate della (1).

5.2 Morfismi di varietà fibrate

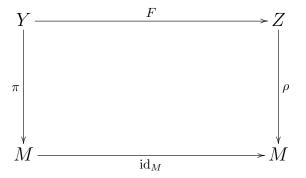
Se consideriamo due varietà fibrate $\pi: Y \longrightarrow M$ e $\rho: Z \longrightarrow N$ possiamo dire che una funzione $F \in \mathcal{C}^{\infty}(Y; Z)$ è un morfismo di varietà fibrate se manda ogni fibra di Y dentro ad una fibra di Z.

Questo può succedere se e solo se esiste una funzione $f \in \mathcal{C}^{\infty}(M; N)$ tale che il seguente diagramma

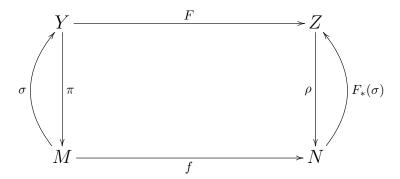


sia commutativo. La composizione di morfismi di varietà fibrate è ancora un morfismo di varietà fibrate. Quando F è un diffeomorfismo allora anche f, che è univocamente determinata da F, deve essere un diffeomorfismo e diremo che F (oppure la coppia (F, f)) è un isomorfismo di varietà fibrate, con $(F, f)^{-1} = (F^{-1}, f^{-1})$. Osserviamo che f può essere un diffeomorfismo senza che F lo sia.

In molti casi concreti che studieremo questa definizione di morfismo di varietà fibrate è fin troppo generale. Nel caso in cui M=N considereremo molto spesso morfismi dove f è un diffeomorfismo, oppure dove f è la funzione identità di M



Quando f è un diffeomorfismo, possiamo definire l'immagine $F_*(\sigma)$ di una sezione locale o globale attraverso il morfismo F. Basta infatti porre $F_*(\sigma) = F \circ \sigma \circ f^{-1}$ e si ottiene il seguente diagramma commutativo



Per definire la controlimmagine abbiamo bisogno che F sia un isomorfismo di varietà fibrate:

$$F^* = (F^{-1})_* = (F_*)^{-1}.$$

5.3 Fibrati differenziabili

Una varietà fibrata (Y, M, π) è un fibrato differenziabile se tutte le fibre Y_p sono diffeomorfe ad una varietà Q, la fibra tipo, e se esiste un ricoprimento aperto $\{U_{\mathfrak{a}}\}_{\mathfrak{a}\in\mathfrak{A}}$ di M con un insieme $\{\psi_{\mathfrak{a}}\}_{\mathfrak{a}\in\mathfrak{A}}$ di isomorfismi $\psi_{\mathfrak{a}}: \pi^{-1}(U_{\mathfrak{a}}) \longrightarrow U_{\mathfrak{a}} \times Q$ di varietà fibrate su $U_{\mathfrak{a}}$. Gli isomorfismi $\psi_{\mathfrak{a}}$, oppure le coppie $(U_{\mathfrak{a}}, \psi_{\mathfrak{a}})$, sono detti trivializzazioni locali del fibrato (Y, M, π, Q) .

Siccome il gruppo di diffeomorfismi Diff(Q) ha una struttura molto complicata e non ha alcuna struttura ragionevole di varietà differenziabile, di dimensione infinita, l'unica possibilità di definire una

funzione $f: U \longrightarrow \mathrm{Diff}(Q)$ di classe \mathcal{C}^{∞} è quella di richiedere che la funzione $U \times Q \longrightarrow Q$ definita da $(x,q) \longmapsto f(x)(q)$ sia una funzione di classe \mathcal{C}^{∞} .

5.3.1 Trivializzazioni locali

Quando abbiamo due trivializzazioni locali $(U_{\mathfrak{a}}, \psi_{\mathfrak{a}})$ e $(U_{\mathfrak{b}}, \psi_{\mathfrak{b}})$ tali che $U_{\mathfrak{a}\mathfrak{b}} = U_{\mathfrak{a}} \cap U_{\mathfrak{b}} \neq \emptyset$, i cambiamenti di trivializzazioni locali sono gli isomorfismi $\psi_{\mathfrak{b}\mathfrak{a}} = \psi_{\mathfrak{b}} \circ (\psi_{\mathfrak{a}})^{-1} : U_{\mathfrak{a}\mathfrak{b}} \times Q \longrightarrow U_{\mathfrak{a}\mathfrak{b}} \times Q$ di varietà fibrate su $U_{\mathfrak{a}\mathfrak{b}}$. In molti casi è preferibile dire che esiste una funzione $\tilde{\psi}_{\mathfrak{b}\mathfrak{a}} : U_{\mathfrak{a}\mathfrak{b}} \longrightarrow \mathrm{Diff}(Q)$, di classe \mathcal{C}^{∞} , tale che $\psi_{\mathfrak{b}\mathfrak{a}} : (x,q) \longmapsto (x,\tilde{\psi}_{\mathfrak{b}\mathfrak{a}}(x)(q))$.

I cambiamenti di trivializzazioni locale soddisfano ad una condizione di cociclo del tipo di quelle che valgono per le trasformazioni di coordinate su una varietà:

- 1. per ogni indice $\mathfrak{a} \in \mathfrak{A}$ si ha $\psi_{\mathfrak{a}\mathfrak{a}} = \mathrm{id}_{U_{\mathfrak{a}} \times Q}$;
- 2. per ogni coppia di indici $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$ si ha $\psi_{\mathfrak{ab}} = (\psi_{\mathfrak{ba}})^{-1}$;
- 3. per ogni terna di indici $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathfrak{A}$ si ha $\psi_{\mathfrak{cb}} \circ \psi_{\mathfrak{ba}} = \psi_{\mathfrak{ca}}$.

Se invece degli isomorfismi $\psi_{\mathfrak{ab}}: U_{\mathfrak{ab}} \times Q \longrightarrow U_{\mathfrak{ab}} \times Q$ usiamo le funzioni $\tilde{\psi}_{\mathfrak{ab}}: U_{\mathfrak{ab}} \longrightarrow \mathrm{Diff}(Q)$, le condizioni di cociclo sono le seguenti:

- 1. per ogni indice $\mathfrak{a} \in \mathfrak{A}$ e per ogni $x \in U_{\mathfrak{a}}$ si ha $\tilde{\psi}_{\mathfrak{a}\mathfrak{a}}(x) = \mathrm{id}_Q$;
- 2. per ogni coppia di indici $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$ e per ogni $x \in U_{\mathfrak{a}\mathfrak{b}}$ si ha $\tilde{\psi}_{\mathfrak{a}\mathfrak{b}}(x) = (\tilde{\psi}_{\mathfrak{b}\mathfrak{a}}(x))^{-1}$;

3. per ogni terna di indici $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathfrak{A}$ e per ogni $x \in U_{\mathfrak{abc}}$ si ha $\tilde{\psi}_{\mathfrak{cb}}(x) \circ \tilde{\psi}_{\mathfrak{ba}}(x) = \tilde{\psi}_{\mathfrak{ca}}(x)$.

5.3.2 Costruzione del fibrato a partire da trivializzazioni locali

Se abbiamo una varietà M, un ricoprimento aperto $\{U_{\mathfrak{a}}\}_{\mathfrak{a}\in\mathfrak{A}}$ di M con un insieme $f_{\mathfrak{ba}}:U_{\mathfrak{ab}}\longrightarrow \mathrm{Diff}(Q)$ che soddisfino le condizioni di cociclo allora si può ricostruire (a meno di isomorfismi) il fibrato (Y,M,π,Q) con una famiglia di trivializzazioni locali $\psi_{\mathfrak{a}}$ tali che $\tilde{\psi}_{\mathfrak{ba}}=f_{\mathfrak{ba}}$.

Il procedimento da seguire è il seguente. Consideriamo l'unione disgiunta Z di tutti i prodotti cartesiani $\{U_{\mathfrak{a}} \times Q\}_{{\mathfrak{a}} \in \mathfrak{A}}$:

$$Z = \bigsqcup_{\mathfrak{a} \in \mathfrak{A}} U_{\mathfrak{a}} \times Q = \bigcup_{\mathfrak{a} \in \mathfrak{A}} \{\mathfrak{a}\} \times U_{\mathfrak{a}} \times Q$$

Sull'insieme Z definiamo una relazione \sim richiedendo che

$$(\mathfrak{a}, x, q) \sim (\mathfrak{b}, x', q') \iff x = x' \land q' = f_{\mathfrak{ba}}(x)(q)$$

Le condizioni di cociclo permettono di dimostrare che la relazione \sim è una relazione di equivalenza. Lo spazio totale della varietà fibrata sarà l'insieme quoziente $Y = Z/\sim$. La proiezione $\pi: Y \longrightarrow M$ è definita da $\pi([(\mathfrak{a}, x, q)]) = x$ e le trivializzazioni locali $\psi_{\mathfrak{a}}: \pi^{-1}(U_{\mathfrak{a}}) \longrightarrow U_{\mathfrak{a}} \times Q$ sono definite da $\psi_{\mathfrak{a}}([(\mathfrak{a}, x, q)]) = (x, q)$. Si veda [5] per la dimostrazione che la topologia di Y indotta dalle trivializzazioni locali $\psi_{\mathfrak{a}}$ è quella di una varietà differenziabile e, quindi, che (Y, M, π, Q) è un fibrato differenziabile.

Dimostrazione presa da [5], pag. 84, Sezione (16.13.3).

Bisogna dimostrare che, con la topologia indotta dalle trivializzazioni locali $\psi_{\mathfrak{a}}$, lo spazio topologico Y è metrizzabile, separabile e localmente compatto. Per fare questo si utilizzano alcune proposizioni dimostrate in [4].

Definendo $Y_{\mathfrak{a}} = \pi^{-1}(U_{\mathfrak{a}})$, le funzioni $\varphi_{\mathfrak{a}} = (\psi_{\mathfrak{a}})^{-1}$ sono omeomorfismi fra le varietà $U_{\mathfrak{a}} \times Q$ e gli aperti $Y_{\mathfrak{a}} \subset Y$. Inoltre, si ha che $\{Y_{\mathfrak{a}}\}_{\mathfrak{a} \in \mathfrak{A}}$ è un ricoprimento aperto di Y e gli insiemi $Y_{\mathfrak{a}} \cap Y_{\mathfrak{b}}$ sono sia aperti di $Y_{\mathfrak{a}}$ che aperti di $Y_{\mathfrak{b}}$ in quanto

$$\varphi_{\mathfrak{a}}(U_{\mathfrak{ab}} \times Q) = Y_{\mathfrak{a}} \cap Y_{\mathfrak{b}} = \varphi_{\mathfrak{b}}(U_{\mathfrak{ab}} \times Q)$$

dove, come al solito, $U_{\mathfrak{ab}} = U_{\mathfrak{a}} \cap U_{\mathfrak{b}}$.

Per la proposizione 5.3 di [4], esiste un ricoprimento aperto numerabile $\{A_n\}_{n\in\mathbb{N}}$ di M più fine del ricoprimento aperto $\{U_{\mathfrak{a}}\}_{{\mathfrak{a}}\in\mathfrak{A}}$. Per la proposizione 5.4 di [4], esiste allora un ricoprimento aperto numerabile $\{B_n\}_{n\in\mathbb{N}}$ di M tale che $\bar{B}_n\subset A_n$ per ogni $n\in\mathbb{N}$.

Per ogni indice n consideriamo un indice $\mathfrak{a}(n)$ tale che $A_n \subset U_{\mathfrak{a}(n)}$ e definiamo

$$W_n = \varphi_{\mathfrak{a}(n)}(\bar{B}_n \times Q) \subset \varphi_{\mathfrak{a}(n)}(A_n \times Q) \subset \varphi_{\mathfrak{a}(n)}(U_{\mathfrak{a}(n)} \times Q) = Y_{\mathfrak{a}(n)}$$

Siccome le parti interne \mathring{W}_n degli insiemi W_n contengono gli insiemi aperti $\phi_{\alpha(n)}(B_n \times Q)$, gli insiemi aperti \mathring{W}_n formano un ricoprimento di X.

La proposizione 5.2 di [4] ci assicura che se gli insiemi W_n sono chiusi in Y allora Y è metrizzabile, separabile e localmente compatto.

L'osservazione 5.1 di [4] ci dice che per dimostrare che gli insiemi W_n sono chiusi in Y basta dimostrare che per tutti gli indici \mathfrak{b} ognuno degli insiemi $W_n \cap Y_{\mathfrak{b}}$ è chiuso in $Y_{\mathfrak{b}}$. Ovviamente, se $Y_{\mathfrak{a}(n)} \cap Y_{\mathfrak{b}} = \emptyset$ si ha che $W_n \cap Y_{\mathfrak{b}} = \emptyset$ è chiuso in $Y_{\mathfrak{b}}$. Se, invece, $W_n \cap Y_{\mathfrak{b}} \neq \emptyset$ si ha che

$$W_n \cap Y_{\mathfrak{b}} = \varphi_{\mathfrak{b}}((\bar{B}_n \cap U_{\mathfrak{b}}) \times Q) = \varphi_{\mathfrak{a}(n)}((\bar{B}_n \cap U_{\mathfrak{b}}) \times Q)$$

e, siccome $\bar{B}_n \cap U_{\mathfrak{b}}$ è un sottoinsieme chiuso di $U_{\mathfrak{b}}$, si ha che $(\bar{B}_n \cap U_{\mathfrak{b}}) \times Q$ è un sottoinsieme chiuso di $U_{\mathfrak{b}} \times Q$; quindi, $W_n \cap Y_{\mathfrak{b}}$ è un sottoinsieme chiuso di $Y_{\mathfrak{b}}$.

Proposizione 5.1 ([4], pag. 4, Osservazione (12.2.2)). Sia $\{U_{\alpha}\}_{{\alpha}\in I}$ un ricoprimento aperto di uno spazio topologico E. Affinché un sottoinsieme $G \subset E$ sia un aperto di E è necessario e sufficiente che ogni insieme $G \cap U_{\alpha}$ sia aperto nel sottospazio U_{α} . Per passaggio al complementare, si deduce che un sottoinsieme $F \subset E$ sia un chiuso di E è necessario e sufficiente che ogni insieme $F \cap U_{\alpha}$ sia chiuso nel sottospazio U_{α} .

Proposizione 5.2 ([4], pag. 13, Proposizione (12.4.7)). Siano E uno spazio topologico, $\{U_n\}$ un ricoprimento aperto al più numerabile di E tale che i sottospazi $\{\bar{U}_n\}$ di E siano metrizzabili e separabili.

Allora lo spazio topologico E è metrizzabile e separabile.

Proposizione 5.3 ([4], pag. 20, Proposizione (12.6.1)). Sia E uno spazio topologico metrizzabile localmente compatto separabile e sia \mathfrak{B} una base di aperti per la topologia di E. Per ogni ricoprimento aperto $\{A_{\lambda}\}_{{\lambda}\in L}$ di E esiste un ricoprimento aperto $\{B_n\}_{n\in\mathbb{N}}$ tale che:

- 1. ogni B_n è un insieme aperto relativamente compatto appartenente a \mathfrak{B} ,
- 2. $\{B_n\}_{n\in\mathbb{N}}$ è localmente finito, numerabile e più fine del ricoprimento $\{A_\lambda\}_{\lambda\in L}$,
- 3. ogni aperto B_n interseca solo un numero finito di aperti B_m .

Proposizione 5.4 ([4], pag. 21, Proposizione (12.6.2)). Sia $\{A_n\}_{n\in\mathbb{N}}$ un ricoprimento aperto, numerabile e localmente finito di uno spazio topologico metrizzabile E. Esiste allora un ricoprimento aperto numerabile $\{B_n\}_{n\in\mathbb{N}}$ di E tale che $\bar{B}_n \subset A_n$ per ogni $n \in \mathbb{N}$.

5.4 Fibrati vettoriali

Fra i fibrati che rivestono un ruolo speciale ci sono i fibrati vettoriali. Diciamo che un fibrato (Y, M, π, Q) è un fibrato vettoriale se la fibra tipo Q è uno spazio vettoriale, di dimensione finita, e se esiste una famiglia di trivializzazioni locali $\{(U_{\mathfrak{a}}, \psi_{\mathfrak{a}})\}_{\mathfrak{a} \in \mathfrak{A}}$ tale che per ogni coppia di indici $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$ e per ogni $x \in U_{\mathfrak{a}\mathfrak{b}}$ si abbia $\tilde{\psi}_{\mathfrak{b}\mathfrak{a}}(x) \in GL(Q)$. Siccome $GL(Q) \subset Diff(Q)$ ha una struttura naturale di varietà differenziabile, possiamo tranquillamente richiedere che le funzioni di transizione $\tilde{\psi}_{\mathfrak{b}\mathfrak{a}}: U_{\mathfrak{a}\mathfrak{b}} \longrightarrow GL(Q)$ siano di classe \mathcal{C}^{∞} . Le fibre Y_x di un fibrato vettoriale (Y, M, π, Q) hanno una struttura naturale di spazio vettoriale isomorfa a quella della fibra tipo Q.

Se consideriamo un fibrato vettoriale (Y, M, π, Q) possiamo definire il fibrato duale (Y^*, M, π, Q^*) che ha come spazio totale

$$Y^* = \bigcup_{x \in M} (Y_x)^*$$

e fibra tipo Q^* . Dalle funzioni di transizione $\{(U_{\mathfrak{ab}}, \tilde{\psi}_{\mathfrak{ba}})\}_{\mathfrak{a},\mathfrak{b}\in\mathfrak{A}}$ di una famiglia di trivializzazioni locali $\{(U_{\mathfrak{a}}, \psi_{\mathfrak{a}})\}_{\mathfrak{a}\in\mathfrak{A}}$ consideriamo le funzioni $(\tilde{\psi}_{\mathfrak{ba}})^*: U_{\mathfrak{ab}} \longrightarrow GL(Q^*)$ definite da $(\tilde{\psi}_{\mathfrak{ba}})^*: x \longmapsto {}^t(\tilde{\psi}_{\mathfrak{ba}}(x))^{-1}$

Se consideriamo due fibrati vettoriali (Y_1, M, π_1, Q_1) e (Y_2, M, π_2, Q_2) , oltre al prodotto cartesiano fibrato

$$Y_1 \times_{_M} Y_2 = \bigcup_{x \in M} (Y_1)_x \times (Y_2)_x,$$

possiamo definire la somma diretta fibrata (che è la stessa cosa)

$$Y_1 \oplus_{\scriptscriptstyle M} Y_2 = \bigcup_{x \in M} (Y_1)_x \oplus (Y_2)_x$$

ed il prodotto tensoriale fibrato

$$Y_1 \otimes_{_M} Y_2 = \bigcup_{x \in M} (Y_1)_x \otimes (Y_2)_x$$

Le operazioni \times_M , \oplus_M e \otimes_M sono associative. Ovviamente possiamo poi considerare, quando necessario, combinazioni di queste operazioni.

Come primi esempi di fibrati vettoriali possiamo considerare i fibrati tangenti $(T(M), \tau_M, M, \mathbb{R}^m)$, i fibrati cotangenti $(T^*(M), \pi_M, M, (\mathbb{R}^m)^*)$ e tutti i fibrati di tensori $(T_s^r(M), \pi, M, T_s^r(\mathbb{R}^m))$ con i loro sottofibrati $(A_s^r(M), \pi, M, A_s^r(\mathbb{R}^m))$ e $(S_s^r(M), \pi, M, S_s^r(\mathbb{R}^m))$.

6 Campi di vettori su varietà

In analogia con quanto detto per i campi di vettori su aperti di spazi affini (vedere [8], sezione 3.5), un campo di vettori tangenti ad una varietà M rappresenta un sistema di equazioni differenziali ordinarie del prim'ordine sulla varietà. Potremo parlare di curve integrali, curve integrali massimali, flusso, integrali primi.

I campi di vettori su M sono le sezioni $\vec{\xi}: M \longrightarrow T(M)$. Siccome T(M) è un fibrato vettoriale con fibra tipo \mathbb{R}^m , esistono sezioni globali di classe \mathcal{C}^{∞} e il loro insieme verrà indicato con $\mathfrak{X}(M)$. L'insieme

 $\mathfrak{X}(M)$ ha una struttura naturale di spazio vettoriale reale di dimensione infinita ed una struttura di $\mathcal{C}^{\infty}(M,\mathbb{R})$ -modulo. È noto che esistono varietà M sulle quali esistono campi di vettori $\vec{\xi} \in \mathfrak{X}(M)$ sempre diversi da zero $(\forall x \in M : \vec{\xi}(x) \neq \vec{0} \in T_x(M))$, ma è altrettanto noto esistono varietà in cui questo non è vero (ad esempio: tutte le sfere di dimensione pari).

Le curve integrali di un campo di vettori $\vec{\xi} \in \mathfrak{X}(U)$ definito su un aperto U di una varietà differenziabile M, sono le funzioni $\gamma \in \mathcal{C}^{\infty}(I;U)$, definite su un intervallo aperto $I \subseteq \mathbb{R}$, e tali che per ogni valore del parametro $t \in I$ il vettore tangente alla curva parametrizzata $\gamma(t)$ nel punto t coincide col valore del campo di vettori $\vec{\xi}$ calcolato nel punto $\gamma(t)$:

$$\frac{d\gamma(t)}{dt} = \vec{\xi}(\gamma(t))$$
 dove $\frac{d\gamma(t)}{dt} = T(\gamma)(t,1) = T_t(\gamma)(1)$

Una funzione $f \in \mathcal{C}^{\infty}(U; \mathbb{R})$ è un integrale primo di $\vec{\xi}$ se f è costante lungo tutte le curve integrali γ di $\vec{\xi}$.

Se l'aperto U è il dominio di un sistema di coordinate $c=(U,\varphi)$ allora possiamo definire l'immagine $\varphi_*(\vec{\xi}) = T(\varphi) \circ \vec{\xi} \circ \varphi^{-1}$ che è un campo di vettori sull'aperto $\varphi(U) \subseteq \mathbb{R}^m$. Possiamo, quindi, affermare che γ è una curva integrale di $\vec{\xi}$ se e solo se $\varphi_*(\gamma) = \varphi \circ \gamma$ è una curva integrale del campo $\varphi_*(\vec{\xi})$. Analogamente, f è un integrale primo di $\vec{\xi}$ se e solo se $\varphi_*(f) = f \circ \varphi^{-1}$ è un integrale primo di $\varphi_*(\vec{\xi})$. Si possono definire le curve integrali massimali γ_x basate nei punti $x \in U$, il flusso $F_{\vec{\xi}}$ ed i diffeomorfismi locali φ_t .

6.1 Rappresentazioni locali con coordinate

In analogia con quanto visto in [8], paragrafo 3.5, i campi di vettori $\vec{\xi} \in \mathfrak{X}(U)$ possono essere visti come operatori differenziali lineari del prim'ordine $\vec{\xi} : \mathcal{C}^{\infty}(U;\mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(U;\mathbb{R})$ che sono derivazioni dell'anello $\mathcal{C}^{\infty}(U;\mathbb{R})$.

Se indichiamo con (x^{α}) le coordinate associate ad un sistema di coordinate (U, φ) , possiamo definire m campi di vettori

$$\frac{\partial}{\partial x^{\alpha}}: p \longmapsto \frac{\partial}{\partial x^{\alpha}}\Big|_{p}:=(T_{p}(\varphi))^{-1}(\varphi(p), \vec{\boldsymbol{u}}_{\alpha})$$

che formano una base per il $\mathcal{C}^{\infty}(U;\mathbb{R})$ -modulo $\mathfrak{X}(U)$. Per rappresentare il campo $\vec{\xi} \in \mathfrak{X}(U)$ sciveremo

$$\vec{\xi} = \xi^{\alpha}(x) \frac{\partial}{\partial x^{\alpha}} \tag{2}$$

dove

$$\vec{\xi}: (x^{\alpha}) \longmapsto (x^{\alpha}, v^{\beta}) = (x^{\alpha}, \xi^{\beta}(x^{\lambda})) \tag{3}$$

è la rappresentazione della funzione $\vec{\xi}: U \longrightarrow T(U)$ utilizzando le coordinate fibrate naturali (x^{α}, v^{β}) su T(U) indotte dalle coordinate (x^{α}) su U.

Le formule (2) e (3) sono abusi di notazione comuni che identificano il campo $\vec{\xi}$ col campo $\varphi_*(\vec{\xi})$.

Osservazione 6.1. [Calcolo delle componenti di un campo di vettori]

Se consideriamo due sistemi di coordinate (x^{α}) e $(x'^{\alpha'})$, dalla (2) si ha

$$\vec{\xi} = \xi^{\alpha}(x)\frac{\partial}{\partial x^{\alpha}} = \xi'^{\alpha'}(x')\frac{\partial}{\partial x'^{\alpha'}}$$
(4)

da cui si deduce che

$$\vec{\xi}(x^{\beta}) = \xi^{\beta}(x) \qquad \wedge \qquad \vec{\xi}(x'^{\beta'}) = \xi'^{\beta'}(x') \tag{5}$$

Se teniamo conto della trasformazione di coordinate $\varphi_{21}: x \longmapsto x'$, si ottiene

$$\xi'^{\beta'}(x'(x)) = \xi^{\beta}(x) \frac{\partial x'^{\beta'}(x)}{\partial x^{\beta}} = \vec{\xi}(x'^{\beta'}(x))$$
(6)

Analogamente, se teniamo conto della trasformazione di coordinate $\varphi_{12}: x' \longmapsto x$, si ottiene

$$\xi^{\beta}(x(x')) = \xi'^{\beta'}(x') \frac{\partial x^{\beta}(x')}{\partial x'^{\beta'}} = \vec{\xi}(x^{\beta}(x'))$$
(7)

6.2 Curve integrali

Le curve integrali di un campo di vettori $\vec{\xi} \in \mathfrak{X}(U)$ definito su un aperto U di una varietà differenziabile M, le curve integrali sono le funzioni $\gamma \in \mathcal{C}^{\infty}(I;U)$, definite su un intervallo aperto $I \subseteq \mathbb{R}$, e tali che per ogni valore del parametro $t \in I$ il vettore tangente alla curva parametrizzata $\gamma(t)$ nel punto t coincide col valore del campo di vettori $\vec{\xi}$ calcolato nel punto $\gamma(t)$:

$$\frac{d\gamma(t)}{dt} = \vec{\xi}(\gamma(t))$$
 dove $\frac{d\gamma(t)}{dt} = T(\gamma)(t,1) = T_t(\gamma)(1)$

Una funzione $f \in \mathcal{C}^{\infty}(U; \mathbb{R})$ è un integrale primo di $\vec{\xi}$ se f è costante lungo tutte le curve integrali γ di $\vec{\xi}$.

Se l'aperto U è il dominio di un sistema di coordinate $\mathfrak{c}=(U,\varphi)$ allora possiamo definire l'immagine $\varphi_*(\vec{\xi})=T(\varphi)\circ\vec{\xi}\circ\varphi^{-1}$ che è un campo di vettori sull'aperto $\varphi(U)\subseteq\mathbb{R}^m$. Possiamo, quindi, affermare che γ è una curva integrale di $\vec{\xi}$ se e solo se $\varphi_*(\gamma)=\varphi\circ\gamma$ è una curva integrale del campo $\varphi_*(\vec{\xi})$.

Analogamente, f è un integrale primo di $\vec{\xi}$ se e solo se $\varphi_*(f) = f \circ \varphi^{-1}$ è un integrale primo di $\varphi_*(\vec{\xi})$. Si possono definire le curve integrali massimali γ_x basate nei punti $x \in U$, il flusso $F_{\vec{\xi}}$ ed i diffeomorfismi locali φ_t .

6.3 Vettori tangenti e campi di vettori tangenti a varietà fibrate

Data una varietà fibrata $\pi: Y \longrightarrow M$, la mappa tangente $T(\pi): T(Y) \longrightarrow T(M)$ definisce una struttura di varietà fibrata che è anche un fibrato vettoriale su Y. In coordinate fibrate (x^{α}, y^{i}) su Y, che inducono coordinate fibrate naturali $(x^{\alpha}, y^{i}, \dot{x}^{\alpha}, \dot{y}^{i})$ su T(Y), la proiezione π è definita da $\pi: (x^{\alpha}, y^{i}) \longmapsto (x^{\alpha})$ e la proiezione $T(\pi)$ è definita da $T(\pi): (x^{\alpha}, y^{i}, \dot{x}^{\alpha}, \dot{y}^{i}) \longmapsto (x^{\alpha}, \dot{x}^{\alpha})$.

In ogni punto $p \in Y$ possiamo definire il sottospazio vettoriale $V_p(Y) = \operatorname{Ker}(T_p(\pi))$ di $T_p(Y)$. Il sottoinsieme

$$V(Y) = \bigcup_{p \in Y} V_p(Y) \equiv \bigcup_{x \in M} T(Y_x)$$

è una sottofibrato vettoriale del fibrato vettoriale $\tau_Y: T(Y) \longrightarrow Y$ che, in coordinate fibrate naturali $(x^{\alpha}, y^i, \dot{x}^{\alpha}, \dot{y}^i)$, è definito da m equazioni lineari $\dot{x}^{\alpha} = 0$.

Un cambiamento di coordinate fibrate

$$(x^{\alpha}, y^{i}) \longmapsto (x'^{\alpha'} = \varphi'^{\alpha'}(x^{\alpha}), y'^{i'} = \Phi'^{i'}(x^{\alpha}, y^{i}))$$

di Y induce una trasformazione di coordinate fibrate naturali

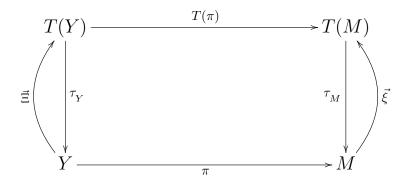
$$(x^{\alpha}, y^{i}, \dot{x}^{\alpha}, \dot{y}^{i}) \longmapsto \left(x^{\prime \alpha'} = \varphi^{\prime \alpha'}(x), y^{\prime i'} = \Phi^{\prime i'}(x, y), \dot{x}^{\prime \alpha'} = \dot{x}^{\alpha} \frac{\partial \varphi^{\prime \alpha'}}{\partial x^{\alpha}}, \dot{y}^{\prime i'} = \dot{x}^{\alpha} \frac{\partial \Phi^{\prime i'}}{\partial x^{\alpha}} + \dot{y}^{i} \frac{\partial \Phi^{\prime i'}}{\partial y^{i}}\right)$$

su T(Y) che a sua volta induce una trasformazione di coordinate fibrate naturali

$$(x^{\alpha}, y^{i}, v^{i}) \longmapsto \left(x'^{\alpha'} = \varphi'^{\alpha'}(x), y'^{i'} = \Phi'^{i'}(x, y), v'^{i'} = v^{i} \frac{\partial \Phi'^{i'}}{\partial y^{i}}\right)$$

su V(Y).

Un campo di vettori $\vec{\Xi} \in \mathfrak{X}(Y)$ è un campo di vettori proiettabile, rispetto alla proiezione π , se esiste un campo di vettori $\vec{\xi} \in \mathfrak{X}(M)$ tale che $T(\pi) \circ \vec{\Xi} = \vec{\xi} \circ \pi$, cioè tale che il diagramma



sia commutativo. L'insieme dei campi di vettori proiettabili $\mathfrak{X}_{P}(Y)$ è un sottospazio vettoriale reale di dimensione infinita di $\mathfrak{X}(Y)$, ma non è un $\mathcal{C}^{\infty}(Y,\mathbb{R})$ -sottomodulo.

Quando il campo di vettori $\vec{\xi}$ è il campo di vettori $\vec{0} \in \mathfrak{X}(M)$ diremo che il campo proiettabile $\vec{\Xi} \in \mathfrak{X}_P(Y)$ è un campo di vettori verticali. L'insieme dei campi di vettori verticali $\mathfrak{X}_V(Y)$ è un sottospazio vettoriale reale di dimensione infinita di $\mathfrak{X}_P(Y)$ che è anche un $\mathcal{C}^{\infty}(Y,\mathbb{R})$ -sottomodulo di $\mathfrak{X}(Y)$.

$$T_p(Y)/V_p(Y) \longleftrightarrow T_{\pi(p)}(M)$$

indotti dalle mappe tangenti $T_p(\pi)$.

Osservazione 6.2. [Trasformazioni di coordinate fibrate per i vettori]

Ricordando che una trasformazione di coordinate fibrate sulla varietà fibrata Y è del tipo

$$(x^{\alpha}, y^{i}) \longmapsto^{\psi_{21}} (x'^{\alpha'} = \varphi'^{\alpha'}(x^{\alpha}), y'^{i'} = \Phi'^{i'}(x^{\alpha}, y^{i})),$$

con trasformazione inversa

$$(x'^{\alpha'}, y'^{i'}) \longmapsto^{\psi_{12}} (x^{\alpha} = \varphi^{\alpha}(x'^{\alpha'}), y^i = \Phi^i(x'^{\alpha'}, y'^{i'})),$$

la legge che lega le due basi $(\partial_{\alpha}, \partial_i)$ e $(\partial'_{\alpha'}, \partial'_{i'})$ è la seguente

$$\left(\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial y^{i}}\right) \longmapsto \left(\frac{\partial \varphi'^{\alpha'}}{\partial x^{\alpha}} \frac{\partial}{\partial x'^{\alpha'}} + \frac{\partial \Phi'^{i'}}{\partial x^{\alpha}} \frac{\partial}{\partial y'^{i'}}, \frac{\partial \Phi'^{i'}}{\partial y^{i}} \frac{\partial}{\partial y'^{i'}}\right).$$

I coefficienti

$$\left(\frac{\partial \varphi'^{\alpha'}}{\partial x^{\alpha}}, \frac{\partial \Phi'^{i'}}{\partial x^{\alpha}}, \frac{\partial \Phi'^{i'}}{\partial y^{i}}\right)$$

che sono funzioni di x o di (x, y) devono essere scritti in funzione di x' o di (x', y') con la trasformazione inversa di coordinate:

$$\left(\frac{\partial \varphi'^{\alpha'}}{\partial x^{\alpha}}(x), \frac{\partial \Phi'^{i'}}{\partial x^{\alpha}}(x, y), \frac{\partial \Phi'^{i'}}{\partial y^{i}}(x, y)\right) \mapsto \left(\frac{\partial \varphi'^{\alpha'}}{\partial x^{\alpha}}(\varphi(x')), \frac{\partial \Phi'^{i'}}{\partial x^{\alpha}}(\varphi(x'), \Phi(x', y')), \frac{\partial \Phi'^{i'}}{\partial y^{i}}(\varphi(x'), \Phi(x', y'))\right)$$

In coordinate fibrate naturali avremo che un campo di vettori $\vec{\Xi} \in \mathfrak{X}(Y)$ sarà rappresentato da espressioni del tipo

$$\vec{\Xi} = \xi^{\alpha}(x, y) \frac{\partial}{\partial x^{\alpha}} + \Xi^{i}(x, y) \frac{\partial}{\partial y^{i}}$$

Se il campo $\vec{\Xi}$ è proiettabile allora si ha

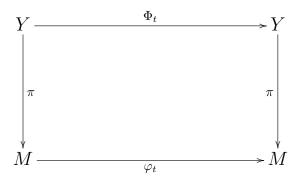
$$\vec{\Xi} = \xi^{\alpha}(x)\frac{\partial}{\partial x^{\alpha}} + \Xi^{i}(x,y)\frac{\partial}{\partial y^{i}}$$

e se $\vec{\Xi}$ è verticale si ha

$$\vec{\Xi} = \Xi^i(x, y) \frac{\partial}{\partial y^i}$$

Queste formule, che valgono solo se su Y si utilizzano coordinate fibrate, ci permettono di dimostrare facilmente che il commutatore di due campi di vettori proiettabili è un campo di vettori proiettabile e che il commutatore di due campi di vettori verticali è un campo di vettori verticali.

Se il campo di vettori $\vec{\Xi}$ è proiettabile allora abbiamo il seguente diagramma commutativo

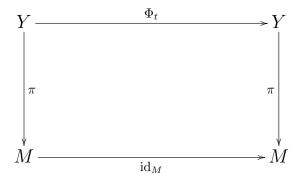


dove Φ_t e φ_t sono i "gruppi ad un parametro" di diffeomorfismi (locali) indotti dai flussi di $\vec{\Xi}$ e di $\vec{\xi}$.

I diffeomorfismi Φ_t sono, quindi, isomorfismi della varietà fibrata Y, sopra ai diffeomorfismi φ_t della base M^2 .

²Ovviamente per i diffeomorfismi è tutto locale, a meno che i campi di vettori $\vec{\Xi}$ e $\vec{\xi}$ non siano completi

Se, invece, il campo di vettori $\vec{\Xi}$ è verticale allora abbiamo il seguente diagramma commutativo



dove Φ_t è il "gruppo ad un parametro" di diffeomorfismi (locali) indotto dal flusso di $\vec{\Xi}$.

I diffeomorfismi Φ_t sono isomorfismi della varietà fibrata Y, sopra l'identità id_M della base M (isomorfismi verticali di Y).

7 Fibrato cotangente

Lo spazio cotangente in un punto p di una varietà M è lo spazio duale dello spazio tangente in $T_p(M)$:

$$T_p^*(M) = (T_p(M))^*$$

Definiamo il fibrato cotangente $T^*(M)$ di una varietà M come l'unione (se necessario disgiunta) di tutti gli spazi cotangenti ad M nei suoi punti:

$$T^*(M) = \bigcup_{p \in M} T_p^*(M),$$

Il fibrato cotangente $T^*(M)$ è il fibrato vettoriale duale del fibrato tangente T(M). Come tale, $T^*(M)$ ha una topologia ed una struttura naturale di varietà differenziabile e come fibrato vettoriale su M è isomorfo, anche se non in modo canonico, al fibrato tangente T(M).

Se $U \subseteq M$ è un sottoinsieme aperto di M, possiamo definire

$$T_p^*(U) = T_p^*(M)$$
 , $T^*(U) = \bigcup_{p \in U} T_p^*(U)$

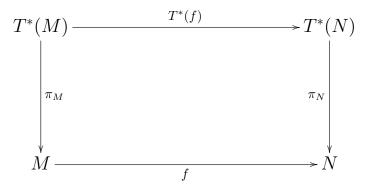
L'insieme $T^*(U)$ è il fibrato cotangente dell'aperto $U \subseteq M$

Data una funzione $f \in \mathcal{C}^{\infty}(M; N)$, possiamo considerare le funzioni lineari trasposte ${}^t(T_p(f))$: $T_{f(p)}^*(N) \longrightarrow T_p^*(M)$, ma si può definire una funzione $T_p^*(f): T_p^*(M) \longrightarrow T_{f(p)}^*(N)$ con proprietà analoghe a quelle della mappa tangente $T_p(f)$ solo se $T_p(f): T_p(M) \longrightarrow T_{f(p)}(N)$ è invertibile. In quest'ultimo caso la funzione f è invertibile in un intorno del punto p e si definisce

$$T_p^*(f) = ({}^t(T_p(f)))^{-1} = {}^t((T_p(f))^{-1}) = {}^t(T_{f(p)}(f^{-1}))$$

Se $f \in \mathcal{C}^{\infty}(M; N)$ è un diffeomorfismo possiamo definire la mappa cotangente $T^*(f): T^*(M) \longrightarrow T^*(N)$,

che è biiettiva, che rende commutativo il seguente diagramma



e tale che: $T^*(g \circ f) = T^*(g) \circ T^*(f)$, $T^*(\mathrm{id}_M) = \mathrm{id}_{T^*(M)}$ e $T^*(f^{-1}) = (T^*(f))^{-1}$.

La struttura topologica e quella differenziale di $T^*(M)$ si possono dedurre dal seguente ragionamento. Dato un punto $p \in M$ ed una carta (U, φ) di M attorno al punto p la funzione $T_p^*(\varphi)$: $T_p^*(M) \longrightarrow T_{\varphi(p)}^*(\mathbb{R}^m)$ definita da

$$T_p^*(\varphi) = {}^t(T_p(\varphi))^{-1}$$

è biiettiva. Le funzioni biiettive $T^*(\varphi): T^*(U) \longrightarrow T^*(\varphi(U)) \equiv \varphi(U) \times \mathbb{R}^m$, permettono di trasportare la struttura topologica e differenziale di $\varphi(U) \times \mathbb{R}^m$ sul sottoinsieme $T^*(U) \subseteq T^*(M)$. Siccome le funzioni di transizione

$$T^*(\varphi_2) \circ (T^*(\varphi_1))^{-1} \equiv T^*(\varphi_{21}) : T^*(\varphi_1(U_{21})) \longrightarrow T^*(\varphi_2(U_{21}))$$

sono di classe \mathcal{C}^{∞} (o \mathcal{C}^k , o \mathcal{C}^{ω}), si può procedere come per T(M). Osservando che le funzioni

$$T^*(\varphi_{21}): \varphi_1(U_{21}) \times (\mathbb{R}^m)^* \longrightarrow \varphi_2(U_{21}) \times (\mathbb{R}^m)^*$$

sono definite da

$$T^*(\varphi_{21}): (p_1, \omega_1) \longmapsto (p_2, \omega_2) = \left(\varphi_{21}(p_1), \ \omega_1 \circ (D(\varphi_{21})(p_1))^{-1}\right)$$

da cui deduciamo che le funzioni $T^*(\varphi_{21})$, che sono lineari nel secondo argomento della coppia, sono in pratica le funzioni di transizione per un fibrato vettoriale. Si ha inoltre che, quando esistono, le funzioni $T^*(f): T^*(M) \longrightarrow T^*(N)$ sono degli isomorfismi di fibrati vettoriali.

La proiezione naturale $\pi_M: T^*(M) \longrightarrow M$ definita da $\underline{\omega} \in T_p^*(M) \Longrightarrow \pi_M(\underline{\omega}) = p$ è una funzione suriettiva, di classe \mathcal{C}^{∞} , e con mappa tangente suriettiva. Ovviamente, per le fibre $(\pi_M)^{-1}(p)$ della proiezione π_M si ha $(\pi_M)^{-1}(p) = T_p^*(M)$. Inoltre si ha $(\pi_M)^{-1}(U) = T^*(U)$ e $\pi_U = (\pi_M)|_{T^*(U)}$.

8 Campi di covettori

In modo analogo ai campi di vettori possiamo definire i campi di covettori, detti anche 1-forme, su una varietà M come le sezioni di classe \mathcal{C}^{∞} del fibrato cotangente di $T^*(M)$. Cioè: le funzioni $\underline{\omega}: M \longrightarrow T^*(M)$ tali che $\pi_M \circ \underline{\omega} = \mathrm{id}_M$. L'insieme delle 1-forme su M, che verrà indicato con $\Omega^1(M)$, è un modulo sull'anello $\mathcal{C}^{\infty}(M; \mathbb{R})$ che coincide col modulo duale del modulo $\mathfrak{X}(M)$.

Il prodotto interno fra un campo di vettori $\vec{\xi} \in \mathfrak{X}(M)$ ed una 1–forma $\underline{\omega} \in \Omega^1(M)$ è la funzione $i_{\vec{\xi}}(\underline{\omega}) \in \mathcal{C}^{\infty}(M;\mathbb{R})$, che verrà indicata anche con $\vec{\xi} \, \bot \, \underline{\omega}$ o con $\underline{\omega}(\vec{\xi})$, definita da:

$$i_{\vec{\xi}}(\underline{\omega}): p \longmapsto i_{\vec{\xi}(p)}(\underline{\omega}(p)) = \underline{\omega}(p)(\vec{\xi}(p))$$

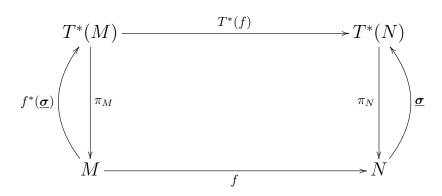
La funzione $(\vec{\xi}, \underline{\omega}) \longmapsto \vec{\xi} \perp \underline{\omega}$, che è bilineare per le strutture di $\mathcal{C}^{\infty}(M; \mathbb{R})$ -moduli di $\mathfrak{X}(M)$ e $\Omega^{1}(M)$, definisce una dualità separante di $\mathcal{C}^{\infty}(M; \mathbb{R})$ -moduli e permette di identificare il modulo $\Omega^{1}(M)$ col modulo duale $\mathfrak{X}(M)^{*}$ ed il modulo $\mathfrak{X}(M)$ col modulo duale $(\Omega^{1}(M))^{*}$.

Data una funzione $f \in \mathcal{C}^{\infty}(M; N)$ ed una 1-forma $\underline{\sigma} \in \Omega^{1}(N)$ è sempre possibile definire la sua controimmagine $f^{*}(\underline{\sigma}) \in \Omega^{1}(M)$ anche quando f non è un diffeomorfismo. Basta infatti definire:

$$f^*(\underline{\boldsymbol{\sigma}})(p) = \underline{\boldsymbol{\sigma}}(f(p)) \circ T_p(f) = {}^t(T_p(f))(\underline{\boldsymbol{\sigma}}(f(p)))$$

La funzione $f^*: \Omega^1(N) \longrightarrow \Omega^1(M)$ è lineare per le strutture di spazi vettoriali di dimensione infinita su \mathbb{R} . Se indichiamo con $\Omega^0(M)$ e con $\Omega^0(N)$ gli anelli $\mathcal{C}^{\infty}(M;\mathbb{R})$ e $\mathcal{C}^{\infty}(N;\mathbb{R})$, possiamo definire un omomorfismo di anelli $f^*: \Omega^0(N) \longrightarrow \Omega^0(M)$ imponendo che sia $f^*(F) = F \circ f$. Ovviamente, si ha $f^*(F_1 \underline{\sigma}_1 + F_2 \underline{\sigma}_2) = f^*(F_1) f^*(\underline{\sigma}_1) + f^*(F_2) f^*(\underline{\sigma}_2)$ per ogni $F_1, F_2 \in \Omega^0(N)$ e per ogni $\underline{\sigma}_1, \underline{\sigma}_2 \in \Omega^1(N)$.

Quando $f\in\mathcal{C}^{\infty}(M;N)$ è un diffeomorfismo, il seguente diagramma



è commutativo e possiamo definire anche $f_*: \mathbf{\Omega}^1(M) \longrightarrow \mathbf{\Omega}^1(N)$ ponendo $f_*(\underline{\boldsymbol{\omega}}) = T^*(f) \circ \underline{\boldsymbol{\omega}} \circ f^{-1}$. Osserviamo che dall'identità $f^*(\underline{\boldsymbol{\sigma}}) = (T^*(f))^{-1} \circ \underline{\boldsymbol{\sigma}} \circ f$ deduciamo che per ogni punto $p \in M$

$$f^*(\underline{\boldsymbol{\sigma}})(p) = (T_p^*(f))^{-1}(\underline{\boldsymbol{\sigma}}(f(p))) = {}^t(T_p(f))(\underline{\boldsymbol{\sigma}}(f(p))) = \underline{\boldsymbol{\sigma}}(f(p)) \circ T_p(f)$$

Scopriamo, quindi, che per definire $f^*(\underline{\sigma})$ non c'è alcun bisogno di supporre che f sia un diffeomorfismo. Quando f non è un diffeomorfismo la freccia orizzontale superiore non esiste, la freccia orizzontale inferiore non è invertibile e non è possibile definire l'immagine $f_*(\underline{\omega})$.

Per ogni funzione $F \in \Omega^0(M)$ possiamo definire il differenziale (esterno) come la 1-forma $dF \in \Omega^1(M)$ ottenuta dalla mappa tangente T(F) ricordando che $T(\mathbb{R}) \equiv \mathbb{R} \times \mathbb{R}$. Basta richiedere che la funzione dF sia definita da:

$$dF: p \longmapsto d_p F = \operatorname{pr}_2 \circ T_p(F) \in T_p^*(M)$$

Si verifica facilmente che il differenziale esterno gode delle seguenti proprietà:

- 1. $d(F_1 + F_2) = dF_1 + dF_2$ per ogni $F_1, F_2 \in \mathbf{\Omega}^0(M)$;
- 2. $d(F_1 F_2) = F_2 dF_1 + F_1 dF_2$ per ogni $F_1, F_2 \in \Omega^0(M)$;
- 3. dF = 0 se e solo se $F \in \Omega^0(M)$ è costante su ogni componente connessa di M;
- 4. per ogni funzione $f \in \mathcal{C}^{\infty}(M; N)$ e per ogni funzione $G \in \Omega^{0}(N)$ si ha $f^{*}(dG) = d(f^{*}(G))$.

Osservazione 8.1. [Trasformazioni di coordinate fibrate]

Ricordando che una trasformazione di coordinate di coordinate fibrate sulla varietà fibrata Y è del tipo

$$(x^{\alpha}, y^{i}) \longmapsto^{\varphi_{21}} (x'^{\alpha'} = \varphi'^{\alpha'}(x^{\alpha}), y'^{i'} = \Phi'^{i'}(x^{\alpha}, y^{i})),$$

con trasformazione inversa

$$(x'^{\alpha'}, y'^{i'}) \longmapsto (x^{\alpha} = \varphi^{\alpha}(x'^{\alpha'}), y^i = \Phi^i(x'^{\alpha'}, y'^{i'})),$$

la legge che lega le due basi duali (dx^{α}, dy^{i}) e $(dx'^{\alpha'}, dy'^{i'})$ è la seguente

$$\left(dx'^{\alpha'},dy'^{i'}\right) \longmapsto \left(\frac{\partial \varphi'^{\alpha'}}{\partial x^{\alpha}}dx^{\alpha},\frac{\partial \Phi'^{i'}}{\partial x^{\alpha}}dx^{\alpha}+\frac{\partial \Phi'^{i'}}{\partial y^{i}}dy^{i}\right).$$

9 Fibrati di tensori covarianti

Lo spazio dei tensori k-volte covarianti in un punto p di una varietà M è lo spazio $T_k^0(T_p(M))$. Il fibrato dei tensori k-volte covarianti sulla varietà M è l'unione (se necessario disgiunta) di tutti gli spazi dei tensori k-volte covarianti

$$T_k^0(M) = \bigcup_{p \in M} T_k^0(T_p(M)),$$

nei vari punti di M. Il fibrato $T_k^0(M)$ è il prodotto tensoriale fibrato

$$T_k^0(M) = T^*(M) \otimes_M \dots \otimes_M T^*(M)$$
 (k volte),

è un fibrato vettoriale su M con fibra tipo $((\mathbb{R}^m)^*)^{\otimes k} \equiv ((\mathbb{R}^m)^{\otimes k})^*$. La proiezione naturale π_M : $T_k^0(M) \longrightarrow M$ definita da $\underline{\omega} \in T_k^0(T_p(M)) \Longrightarrow \pi_M(\underline{\omega}) = p$ è una funzione di classe \mathcal{C}^{∞} suriettiva e con mappa tangente suriettiva. Ovviamente, per le fibre $(\pi_M)^{-1}(p)$ della proiezione π_M si ha

$$(\pi_M)^{-1}(p) = T_k^0(T_p(M)) \equiv (T_p^*(M))^{\otimes k} \equiv ((T_p(M))^{\otimes k})^*$$
.

Se consideriamo un sottoinsieme aperto $U\subseteq M$, possiamo definire il fibrato vettoriale dei tensori k-volte covarianti sull'aperto $U\in M$

$$T_k^0(U) = \bigcup_{p \in U} T_k^0(T_p(M)) \equiv \bigcup_{p \in U} (T_p^*(M))^{\otimes k} \equiv \bigcup_{p \in U} ((T_p(M))^{\otimes k})^*$$

e si ha $(\pi_M)^{-1}(U) = T_k^0(U)$ e $\pi_U = (\pi_M)|_{T_k^0(U)}$.

Data una funzione $f \in \mathcal{C}^{\infty}(M; N)$, possiamo considerare i prodotti cartesiani

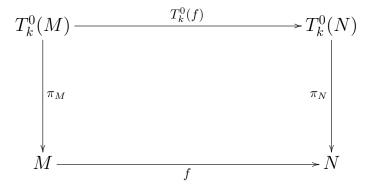
$$[^t(T_p(f))]^k: [T_{f(p)}^*(N)]^k \longrightarrow [T_p^*(M)]^k,$$

ed i prodotti tensoriali

$$[^t(T_p(f))]^{\otimes k}: [T_{f(p)}^*(N)]^{\otimes k} \longrightarrow [T_p^*(M)]^{\otimes k}.$$

Si può definire una funzione $T_k^0(T_p(f)): T_k^0(T_p(M)) \longrightarrow T_k^0(T_{f(p)}(N))$ con proprietà analoghe a quelle della mappa tangente $T_p(f)$ se solo se $T_p(f): T_p(M) \longrightarrow T_{f(p)}(N)$ è invertibile. Se $f \in \mathcal{C}^{\infty}(M; N)$

è un diffeomorfismo possiamo definire la mappa $T_k^0(f):T_k^0(M)\longrightarrow T_k^0(N)$, che è a sua volta un diffeomorfismo, che rende commutativo il seguente diagramma



e tale che: $T_k^0(g \circ f) = T_k^0(g) \circ T_k^0(f), T_k^0(\mathrm{id}_M) = \mathrm{id}_{T_k^0(M)}$ e $T_k^0(f^{-1}) = (T_k^0(f))^{-1}$.

FINE LEZIONE 12 MMdFC (2023-04-04 ore 16:00 – 18:00)

Riferimenti bibliografici

[1] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, Vol. I; John Wiley & Sons, New York · Chichester · Brisbane · Toronto · Singapore, 1963.

- [2] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, Vol. II; John Wiley & Sons, New York · Chichester · Brisbane · Toronto, 1969.
- [3] J. Dieudonné: Éléments d'analyse 1 / Fondements de l'analyse moderne; Gauthier-Villars, Paris, 1969.
- [4] J. Dieudonné: Éléments d'analyse 2; Gauthier-Villars, Paris, 1969.
- [5] J. Dieudonné: Éléments d'analyse 3; Gauthier-Villars, Paris, 1969.
- [6] J. E. Marsden, T. Ratiu, R. Abraham: Manifolds, tensor analysis and applications, Third Edition; Springer-Verlag, 2001.
- [7] M. Ferraris: Appunti di algebra lineare, multilineare e tensori; 2023.
- [8] M. Ferraris: Appunti di calcolo differenziale; 2023.