The course aims at providing an overview on the most widespread characterization methods yielding detailed information on the structure of matter in all its forms: solids (crystalline and amorphous), liquid and gases, bulk and nanostructured materials. After reviewing the fundamentals of probe/matter interaction for the main structural probes (X-ray photons, neutrons, electrons) and the probe-specific advantages/limitations, the course deals with theoretical principles and main experimental geometries for structural determination by X-ray/neutron elastic scattering, as well as for local structural analysis by X-ray absorption spectroscopy. Key differences and complementarities between X-ray and neutron scattering are emphasized, to guide the students towards an effective exploitation of such probes for the characterization of materials. Modern large-scale facility-based X-ray (synchrotrons and XFELs) and neutron sources are also presented, illustrating how to exploit their properties to solve challenging structural problems.
- Teacher: Elisa Borfecchia
- Teacher: Alessandro Pavese